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1. CENTRAL QUESTION
Assuming a physically sound formulation, what drives the spatial and temporal 
variability of evaporative demand (E0) across the conterminous US?

Due to the essentially unknowable nature of the distribution of soil 
and vegetative moisture at the temporal and spatial scales useful 
to water managers, hydrologists have long used the concept of 
evaporative demand (E0) to describe the upper limit to actual 
evapotranspiration (ET). E0 then drives hydrologic models or 
empirical relations that account for soil moisture conditions and 
vegetative constraints on moisture transfer to estimate actual ET. 

To improve its streamflow forecast skill, the Colorado Basin 
River Forecast Center (CBRFC) is replacing the current static 
E0 driver of its river forecast model (a climatological monthly 
pan evaporation value derived from outdated data) with one 
that is temporally dynamic and physically sound: synthetic 
pan evaporation (Epan) from the PenPan model [ref 1]. 

Given the hydroclimatologic heterogeneity and varied 
temporal scales of CBRFC operations, it is essential to 
characterize the temporal and spatial variability of the 
new E0 driver, in both its magnitude and its sources. Here 
we examine the temporal and spatial variability in Epan 
using a first-order, second-moment uncertainty analysis 
applied to a gridded reanalysis time-series of Epan across 
various time-scales and CONUS-wide. Our results have 
broad implications in hydrology, but particularly for the 
CBRFC, can help identify which drivers require the most 
pre-processing in such formulations, and which, perhaps, 
may be ignored in moving to a forecast context that has 
fewer data inputs available. 

Goal: A 30-year reanalysis of E0 using Epan

Evaporative demand (E0) has 
been observed as Epan for many 
decades on a daily basis at US 
class-A evaporation pans around 
the world. The PenPan model 
[ref 1] synthesizes Epan well [ref 
2], using only meteorological 
drivers commonly observed at 
the land surface.

Fig 1: A typical US class-A 
evaporation pan.

Model formulation

The PenPan model modifies the Penman equation [ref 
3] for potential evaporation to better characterize the 
enhanced radiative and advective dynamics of US class-A 
evaporation pans:
 

  	
	

(1)

In eqn (1), λ is the latent heat of vaporization; U2 is 
the 2-m wind speed; fq(U2) is the wind function; esat  
and  ea are the saturated and  actual vapor pressures, 
respectively; Δ is desat/dT at T; aP is the ratio of effective 
surface areas for heat and water-vapor transfer in a 
pan; γ is the psychrometric constant; and Qn is the net 
available energy for Epan.

North American Land Data Assimilation 
System (NLDAS) drivers [ref 4]
 

•	 T, air temperature at 2 m
•	 q, specific humidity at 2 m 
•	 Rd, downwelling shortwave radiation 
•	 Ld, downwelling longwave radiation 
•	 Patm, station pressure 
•	 U10, wind speed at 10 m
•	 1/8th-degree spatial resolution
•	 CONUS-wide
•	 Hourly time-step
•	 January 1, 1980, to December 31, 2009

Epan was generated on a daily basis from January 1, 
1980, to December 31, 2009. Shown here are the 
mean and variance of annual Epan aggregated from 
daily totals; similar results may be obtained for daily 
to annual time-frames. As expected, and in line with 
Epan observations [ref 5], annual Epan is highest in 
the sunniest, warmest, driest, and windiest regions. 
The annual variability of Epan, here estimated by its 
variance, does not match the spatial pattern of its 
annual magnitude (see fig 2).

Fig 2: Mean annual Epan, as estimated by the PenPan model 
forced by NLDAS data, 1980-2009 (mm/year).

Fig 3: Variance of annual Epan, as estimated by the PenPan 
model forced by NLDAS data, 1980-2009 (mm2/year2).

2. ABSTRACT

Sensitivities, Variances, and Covariances 

The sensitivities of Epan to each of its drivers are derived 
analytically (eqns (6) - (10)) from the model formulation (see 
eqn (1)), and evaluated at drivers’ mean values.

  	

(5)

  	

(6)

 	

(7)

  	

(8)

  	

(9)

 

(10)

Fig 5 shows an example of sensitivity: of Epan to U10.  As 
expected from eqn (1), the sensitivity of Epan to U10 is greatest 
in areas where the vapor pressure deficit (i.e., esat – ea) is 
the greatest. The converse is presumably also true: the 
sensitivity of Epan to vapor pressure deficit is greatest in the 
windiest areas (not shown).

Figs 4 and 6 shows examples of the spatial patterns of variance 
(of U10) and covariance (of U10 and Rd), respectively. As might 
be expected, the variance of U10 is greatest along the coasts, 
the Great Lakes and in the higher elevations of the western US 
and Appalachians. It is difficult to draw meaningful conclusions 
regarding the covariance of U10 and Rd: indeed, covariances 
between many pairs of variables can be slight

Fig 4: Variance of annual mean U10, 1980-2009 (m2/sec2).

Fig 5: Sensitivity of annual Epan to annual mean U10, 1980-
2009 ((mm/year)/(m/sec)).

Fig 6: Covariance of annual mean U10 and annual mean Rd, 
1980-2009 (W/m.sec).

4. VARIABILITY ANALYSIS 

Concept

Epan is a function of its six drivers:

 	  

(2)

The variability in Epan (σ
2

Epan) derives from the variability in all its drivers acting independently and covarying, 
which are composed of sensitivities, variances, and covariances:
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The full expression for the variability in Epan expressed as a function of the contributions from all of its 
components in the first-order, second-moment uncertainty analysis framework:
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Fig 7: The dominant driver of variability in (top) annual Epan; (center) monthly Epan for July; 
and (bottom) monthly Epan for January.

5. CONCLUSIONS
Toward the goal of understanding the 
predictability of the energy and water cycles, 
a rigorous first-order, second-moment 
variability analysis of synthetic Epan, a physically 
sound measure of E0, demonstrates the 
contributions to E0-variability by all of its 
drivers varying alone or covarying in 
pairs. For annual Epan, we indicate where 
each driver dominates and we hint at the 
implications of seasonal variability.

Correctly identifying and including the 
dominant drivers of E0 variability is 
crucial for any hydrologic application that 
estimates actual ET from models driven 
by E0, such as streamflow forecasting and 
drought analyses. Due to their simplicity, 
E0 parameterizations based solely on 
T [refs 6, 7, 8] are used in areas and 
applications for which they are ill-suited, as 
in the use of the Palmer Drought Severity 
Index (PDSI) [ref 9] in the US Drought 
Monitor for tracking ongoing droughts and 

the analysis of secular drought trends. 
Using the T-based E0 parameterization in 
the standard PDSI has led to predictions 
of long-term mid-latitude continental drying 
[ref 10], in contrast to observations [ref 11]. 
When forced by Epan observations, the PDSI 
estimates both drying and wetting [ref 12], in 
line with observations.

As we show here, across most of CONUS, 
not only is T not the greatest driver of annual 
E0 variability, but where it does dominate, 

such dominance wanes in the important 
months of the growing season. Across 
nearly all coastal regions, Rd contributes the 
greatest variability in annual Epan. In many 
other parts of the country for much of the year 
no single driver dominates Epan, and instead 
covarying drivers must be considered.

This analysis is predicated on the central 
assumption that Epan from the PenPan 
model synthesizes E0 well, an assumption 
that locks in this suite of drivers. To ensure 

that we are not begging the question, 
a principal components analysis of 
observations of Epan with respect to the 
same suite of drivers will indicate the 
soundness of this assumption. 

Most results shown here are for annual Epan 
aggregated from daily modeling. Similar 
analyses are possible at all time-frames down 
to the daily scale. Seasonal analyses will 
focus on evaporative demand during the all-
important growing and water supply seasons.
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Dominant Drivers of Variability 
The drivers contributing the greatest variability to Epan vary 
significantly across different time-frames. Annually (top), a 
coastal/continental distinction emerges, with T dominating 
Epan variability across the heart of the continent and Rd 
across the Northeast, the Southeast, and the Pacific 
Northwest. Undifferentiated covarying pairs of drivers 
dominate across the rest of CONUS. In winter (center), 
when Epan is at its lowest, T becomes the dominant 
variability driver of monthly Epan. In the vital summer 
months (bottom), Rd dominates across the eastern half 
of CONUS, while the undifferentiated covarying pairs of 
drivers dominate the High Plains region, and T and U10 
drive Epan variability across western CONUS.

contribution of individual drivers varying independently

contribution from interdependence of all driver pairs

3. MODELING EVAPORATIVE DEMAND
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