
Progress Report during June 15 – September 15, 2008 
 

Developing Seasonal Predictive Capability  
for Drought Mitigation Decision Support System 

 
PI: Ximing Cai1; Co-PIs: Jae Ryu3, Xin-Zhong Liang2, Praveen Kumar1, Mark Svoboda3, Cody 

Knutson3, Donald A. Wilhite3; Co-Is: James Angel2, and Michael Palecki2

1Department of Civil and Environmental Engineering, University of Illinois, Urbana (UIUC) 
2Illinois State Water Survey (ISWS), University of Illinois 

3National Drought Mitigation Center (NDMC), University of Nebraska-Lincoln (UNL) 
 
1. Introduction 
 
 This report presents the progress of the project during its first six months, June 15, 2008 – 
January 15, 2009.  It is prepared by PI Ximing Cai, Co-PIs Xin-Zhong Liang and Jae Ryu with 
inputs from all other Co-PIs and supporting staff.  The major tasks include a pilot downscaling 
experiment using the GMAO forecasts, drought information extraction for regional applications, 
preparation of DSS users’ survey, and the development of an algorithm of using short-term 
forecast for irrigation scheduling decision. 
 
2. Activities and Outputs 
 
 The activities during the first three months of the project (June-September 2008) have 
been described in the three-month report submitted in September 2008. The major work included 
the development of project management details, data processing, and communication with 
extension agencies including National Irrigation Association, and National Corn Growers 
Association.  In the following the activities and outputs are presented by project tasks. 
 
Task 1: Extended Literature Review  
  
 We conducted an extended literature review following what was presented in the 
proposal on drought studies particularly on drought damage, potential drought index, drought 
frequency and intensity change with climate change and variability and the use of drought 
forecast for decision making. This review ends with research challenges and future roadmap. A 
tentative draft of the literature report is included in the appendix. 
 
Task 2: CWRF Downscaling of NASA GMAO Climate Prediction 

 
The drought prediction group has acquired, from Dr. Siegfried Schubert, the NASA 

experimental climate forecasts using the GMAO (Global Modeling and Assimilation Office) 
coupled atmosphere-ocean general circulation model (GCM). The GMAO predicts, at a 10-
month lead, global variations of surface and atmospheric circulation. Currently GMAO data are 
available on a 2.5° longitude by 2° latitude grid at a daily time interval. They provide the initial 
surface boundary conditions and the time-varying lateral boundary conditions for the CWRF 
(Climate-Weather Research and Forecasting model) to produce regional downscaling at 30-km 
grid spacing. 
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A pilot downscaling experiment has been completed using the GMAO forecasts for the 

period of May 1 to October 31, 2007. There are 21 GMAO realizations, each initialized by 
different surface and atmospheric states. Without any bias correction, the raw GMAO outputs, 
including both surface and atmospheric variables, are used to drive CWRF. The main purpose of 
this initial experiment is to identify key problems in downscaling for subsequent improvements. 
  

Figure 1 illustrates summer (June-July-August) mean surface air (2 m) temperature, 
including the ensemble mean and deviation over the 21 realizations. The CWRF downscaling 
result is compared with those observed and simulated by the driving GMAO. Clearly, the 
GMAO contains substantial biases over the whole U.S., while the CWRF downscaling provides 
significant improvements with the ensemble mean distribution much closer to observations. On 
the other hand, there exist large spreads across different realizations, centered in the central U.S. 
and northwest U.S. These spreads, caused by internal or natural climate variability, offer a 
quantitative measure of prediction uncertainty. 
  

 

Fig. 1. JJA mean surface 
air (2 m) temperature, 
including the ensemble 
and deviation over the 
21 realizations. The 
upper left, lower left and 
lower right are the 
average values for 
CWRF, observation and 
GMAO respectively, the 
upper right is the 
deviation values for the 
CWRF. 

 
Figure 2 depicts summer (June-July-August) mean precipitation, including the ensemble 

mean and deviation over the 21 realizations. As compared with observations, the CWRF 
downscaling generates more realistic (than the driving GMAO) precipitation over the North 
American monsoon region and the coastal areas along the Gulf of Mexico. Improvement is also 
seen over the Upper Mississippi basin. Overestimations, however, exist over most of the 
Missouri and Ohio basins as well as the eastern coast states. They can be traced back to the 
driving GMAO with even more excessive rainfall over these regions. This suggests that certain 
bias corrections or data assimilation are needed to improve precipitation prediction at regional-
local scales. Like temperature, large precipitation spreads due to natural variability also exist in 
central U.S., requiring incorporation of uncertainty in the decision support system.  
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Fig. 2. The same as 
above, but for 
precipitation. 

 
Figure 3 shows daily variations (during summer of 2007) of the ensemble mean and 

deviation for surface air temperature, precipitation, evaporation, and top-1m soil moisture 
content as averaged over the Midwest. The large spreads across 21 realizations are evident in all 
these variables, with the respective standard deviation of 2.1°C, 2.25 mm d-1, 0.44 mm d-1, and 
12 mm, as averaged over the summer. They can be used to construct probability distribution 
functions for implementation into the region-specific hydrologic models (e.g. Republican river 
basin model) and the decision support system. Note that the soil moisture systematically declines 
during the integration, starting fast and gradually approaching an equilibrium around October. 
This results from the initial soil moisture based on the GMAO forecasts that seem too wet. A big 
problem is that we currently do not have high-quality observations to evaluate the accuracy of 
soil moisture. A preliminary comparison with the North American Regional Reanalysis (NARR) 
indicates that the modeled soil moisture is larger in the Midwest. This may partially explain that 
the CWRF downscaling reduction on GMAO excessive rainfall is not significant over the 
Midwest. We are planning to use the NARR as well as other bias corrections and data 
assimilation techniques to initialize the surface states, including soil temperature and moisture, 
and rerun the case to determine how a more realistic initialization will affect the precipitation 
result. 
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Fig. 3. Daily variations of the ensemble mean and deviation for evaporation, 
top-1m soil moisture content, precipitation and surface air temperature averaged 
over the Midwest during the summer of 2007.  

 
Task 3: Drought information extraction for regional applications 
 
  To improve the predictability of climate forecast at local watershed scales in terms of 
meteorological anomalies associated with precipitation and temperature forecast products, a 
statistical correction and evaluation technique are needed. Thus, since the spatial resolutions of 
these products are still relatively coarse, it is necessary to apply adjustment procedures to all 
ensemble members to a specific regional watershed to minimize the error associated with a 
coarser grid. The systematic biases in the CWRF forecasts of precipitation and temperature are 
first examined with four distinct sub-tasks: 1) transformation, 2) statistical correction, 3) 
improvement of forecasts, and 4) skill test for regional streamflow forecasts. A statistical 
correction procedure can be conducted to minimize the spatial and temporal difference between 
two models (the CWRF and the hydrology model). This process is conducted in a probability 
framework using normal probability density functions (PDFs). Potential forecast improvements 
is then determined based on the correspondence between the observed conditional mean and the 
conditional forecasts. These measures classify the forecast/observation pairs into groups 
according to the value of the forecast variable and characterize the conditional distribution of the 
observations given the forecasts. Once forecast improvement processes along with bias 
correction have been completed, bias-corrected climatological variables (e.g. precipitation) from 
the CWRF’s forecast products will be routed through a computational routine to derive the 
forecasted standard precipitation index, and those variables are also routed into the regional 
watershed model as forcing to generate streamflow, which is a component of forecasted 
hydrologic index. Figure 4 represents the statistical correction procedure for monthly 
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precipitation, which related to one CWRF grid point with one weather station in the Republican 
River Basin.  
 

 
Fig 4. Bias-correction procedure of precipitation data (mm) for CWRF forecast (y) to one of 
observed data (x) in the Republican River Basin.  
 
  As shown in the Fig 4, the probability of the initial retrospective forecasts of ensemble 
mean precipitation from the CWRF for a given month is the probability, P(y) along the 
retrospective density function f(y). This P(y) relates to P(x), which produces a “bias-corrected” 
forecast, P(y*). The double sided direction of the arrow in the figure indicates the value of the 
bias-correction.  
 
  An algorithm of hydrologic drought index has been also developed in past three months. 
To generate hydrologic index, a simple algorithm has been developed.  The procedure utilized in 
calculating the Log-Standardized Hydrologic Drought Index (LSHDI) is to de-sesonalize the 
logarithm of the monthly average streamflows by substracting the long-term mean of the 
monthly loarrithm and then dividing by the logarithm of the standard deviation for the given 
month to create a zero-mean process. The LSHDI is calculated as:  
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  Like other drought indices such as the Palmer Drought Severity Index (PDSI) and 
Standardized Precipitation Index (SPI), the LSHDI is standardized, which allows direct 
comparisons of diverse drought indices in the regional watershed. The LSHDI is a measure of 
the streamflow abnormality over a period of low flow, average flow, and peak flow. Thus, the 
lower the index, the more severe the hydrologic drought associated with low flow, while the 
higher the index, the more likely the occurrence of flooding due to subsequent peak flows. The 
range of the index can be analogous to PDSI values of -3 to -4 as a severe drought, -2 to -3 
moderate drought, 2 to 3 moderately wet, 3 to 4 extremely wet, and so on.  
 
Task 4: Users’ survey development 
  

During the past three months, the drought information assessment and dissemination 
group led by J. Ryu has met numerous times to discuss and develop an initial draft of an online 
survey questionnaire to be administered to members of the National Corn Growers Association 
(NCGA). The main purpose of this survey is to identify the perceptions of irrigating and non-
irrigating corn growers across the country in regards to forecast data, the usefulness of forecasts 
to them, the optimal forecast timescale for decision making (15, 30, 90 day forecasts, etc.), and at 
what time of the year forecasts are most beneficial. Understanding the needs of end-users is 
essential for designing and disseminating appropriate forecast information, and was highlighted 
as an important activity at the 33rd Climate Diagnostics and Prediction Workshop (Oct 20-24, 
Lincoln, Nebraska) organized by NOAA and the NDMC. 

 
An initial draft of survey questions were developed and selected by Co-PIs J. Ryu, C. 

Knutson, and M. Svoboda with inputs from other team members. The questions were generated 
and selected to match our intended project objectives and goals. The questionnaire commences 
with descriptive questions such as location, education, and farm ownership. It also employs a 
series of closed-ended questions such as categorical, numerical and ordinal questions to generate 
the quantitative data that we will utilize in meeting our objectives. A draft mock-up of the web-
based survey is available at http://rainier.unl.edu/survey. 
 

The initial version of survey questions was sent to the board members of the National 
Corn Grower Association (NCGA) during the first week of December, 2008. The board 
members wanted to gain a better understanding of the type of survey they would be 
disseminating to their members. We are still collecting all of their input, although the initial 
comments were favorable.  

 
Over the next three months, the DM-DSS research team at UNL will focus on two major 

tasks. First, the survey questionnaire will be refined and finalized. The research team is 
investigating potential research questions to ensure their appropriateness in meeting the project 
research objectives, and contributing to the basic science of forecast use and development. The 
project team is also investigating new software that could be utilized in developing an enhanced 
online survey. Once completed, the survey materials will be submitted to the UNL Institutional 
Review Board for final approval.  Once the survey is approved, it will be disseminated to 
members of the NCGA who have internet access. The research team will follow a protocol based 
on the Dillman Total Design Survey Method (1986), which includes the use of multiple contacts 
with stakeholders to facilitate higher response rates. Once initiated, the survey is expected to take 
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up to a month to complete. We expect that we will have a reasonable response rate based on 
communications with NCGA.  
    

As required by the University of Nebraska-Lincoln, members of the research team have 
also received the appropriate certification to conduct research that involves the use of human 
subjects. Members took the online training to meet the UNL Institutional Review Board’s 
requirements to ensure high ethical and research standards. Co-PIs, J. Ryu and C. Knutson, 
Nicole Wall (Outreach and Research Specialist), and Jane Okalebo (Graduate Student Research 
Assistant) have taken these classes to comply with UNL’s Federal-Wide Assurance requirement. 

 
In addition to our project activities, we have had one project personnel change. Meghan 

Sittler has accepted a new position at the Lower Platter River Corridor Alliance 
(http://www.lowerplatte.org) and is no longer at NDMC. We have a new staff member, Nicole 
Wall who will take the role of Public Participation Specialist. Nicole will work closely with the 
Principal and co-Principal Investigators. Her experience and expertise are a close fit to the 
project requirements and her contribution will be valuable. 
 
Task 5: Couple Decision Analysis Models for Case Studies 
  
 The decision modeling group has completed the formulation and validation of the 
methodology framework of an irrigation decision support system (DSS), which incorporates 
NOAA’s one-week probability-based weather forecast into the decision process.  The core of the 
DSS is a soil-water-atmosphere-plant (SWAP) simulation model. Taking advantage of previous 
work, this model has already been calibrated and versified for the case study site. This 
methodology test will address two questions: 1) how can we consider the uncertainty of the 
weekly forecast for real-time irrigation scheduling? 2) What is the economic value of the forecast 
for irrigation farmers? The preliminary results apply to one of the two case study sites identified 
for this project, the Havana Lowlands region, Illinois. 

  
 The objective of the DSS optimization framework is to maximize farmers’ benefits 
(expected value) over an entire irrigation season by repeatedly answering two questions: should 
we irrigate? And if we decide to irrigate, how much should we irrigate? The DSS framework 
simulates the farmers’ decisions at the daily temporal scale and maintains the mass balance of 
soil moisture and accumulating evaportranspiration as farmers’ decisions progress through the 
irrigation season. The DSS provides a real-time stochastic optimization with short-term 
stochastic weather forecast. As depicted in Figure 5, decisions are made on daily basis in a 
moving window fashion, where today’s irrigation decision of how much to irrigate is optimized 
based on existing conditions (today) and forecasted climatic conditions (future) over a maximum 
of one week. 
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babilities associated with each of the future 7 days is computed based on 
historic

  
 category and for each day, the probabilities of rain and no rain are computed 

based o

gories from NOAA’s weekly rainfall forecasts in Mason County, IL 

The pro
al 7-day probabilistic forecast by NOAA in Mason County, IL during the years of 2002 to 

2006. The historical forecasts of rainfall data during the growing seasons of the five years were 
compiled into 11 categories as described in Table 1. Preliminary results showed that the 
reliability of forecasts substantially change with the change in forecast horizon. For example, the 
probability of correctly predicting a rainfall event on day t+1 is much more pronounced than the 
same probability on day t+7. 

Table 1. List of cate

For each
n historical data (see Figure 6). For each category, four scenarios are described along 

with their corresponding probabilities (PNo Rain + PRain = P No Rain + P Little Rain + P Moderate Rain + P 
Heavy Rain = 1) and rainfall depth values. The rainfall depth values are simply the historical mean 
values. The probabilities and their associated rainfall depth values differ for the various days of 
the forecasting horizon. So a 50% chance of rain tomorrow will carry a different a set of 
probabilities of rain and no-rain, than the same probability of rain on the 7th day of the 
forecasting horizon. Thus, to compute the maximum benefit, an expected value over all possible 
combinations of forecasting scenarios is necessary. For the preliminary results we have reduced 

Category Description 
1 No rain 
2 Chance of rain is between 20 and 40% 
3 Chance of rain is between 40 and 60% 
4 Chance of rain is between 60 and 80% 
5 Chance of rain is between 80 and 100% 
6 Chance of showers and thunderstorms is between 20% and 40% 
7 Chance of showers and thunderstorms is between 40% and 60% 
8 Chance of showers and thunderstorms is between 60% and 80% 
9 Chance of showers and thunderstorms is between 80% and 100% 
10 Showers and thunderstorms likely 
11 Some thunderstorms may contain heavy rainfall 

Fig. 5. Schematic of the 
moving-window 
stochastic optimization 
framework of irrigation 
in real-time. 
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the number of rainfall forecasting scenarios to two (rain or no-rain) to reduce the computational 
requirements. 
  

 
  
 Figure 7 compares the results between a rule-based simulation and the DSS optim

 

zation 
out incorporating any future rainfall forecasts. The rule-based algorithm is based 

 

Fig. 6. Rainfall 
probabilistic scenarios to 
be determined from 
historical data.  

i
framework with
on the conditions of soil moisture in the soil column or more specifically the ratio of cumulative 
actual evapotranspiration over cumulative potential evapotranspiration (cETa/cETp) and further 
details about the rule-based algorithm are available in Dingbao and Cai (2009). The results show 
a substantially higher cETa/cETp values from optimization over simulation especially during dry 
years. The results translate to a 50.5% improvement on average in total profit from optimization 
over the rule-based approach. 
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Fig. 7. comparing the result from the DSS optimization framework to a rule-based simulation 
approach; both scenarios assume no rainfall forecast. 
 

Unlike Figure 7, Figure 8 compares the results between the rule-based simulation and the 
DSS optimization framework with incorporating 7-day uncertain forecasts of future rainfall. 
Again the results show a substantially higher cETa/cETp values from optimization over 
simulation especially during dry years. The results translate to a 36.8% improvement on average 
in total profit from optimization over the rule-based approach. 
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Fig. 8. Comparing the result from the DSS optimization framework to a rule-based simulation 
approach; both scenarios assume a 7-day uncertain rainfall forecast. 
  
The current DSS framework will allow us to address questions such as: 

• What is the advantage of optimization over the conventional rule-based approach? 
• What is the gain from short-term weather forecasts (e.g., 1-day, 2-day, …, 7-day)? 
• How reliable are current forecasts to aid farmers’ decisions? 

 
Task 6: Research Extension: Communication with users’ representatives  
 
 We have been working with National Corn Growers Association (NCGA) for users’ 
survey.  We have been also working with Irrigation Association (IA) for the demonstration of the 
use of short-term forecast for irrigation scheduling. A site visit of IA and presentation are 
scheduled for April 2009.  The contact person of NCGA is Richard Glass Vice president of 
NCGA; the contact person of IA is Erin D. Field, Agriculture Affairs Director, Irrigation 
Association.  Both NCGA and IA will provide their existing mechanisms for conducting users’ 
surveys and demonstrating decision making tools. 
   
3. Work Plan for Next Three Months 
 
Forecast: Climate Forecast Initialization: The initialization for the CWRF downscaling system 
will be improved. This will involve the interface development for CWRF to integrate the NARR 
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and/or GMAO reanalysis to initialize the surface states, including soil temperature and moisture. 
We will rerun the pilot case to determine how a more realistic initialization will affect the CWRF 
downscaling results.  

  
Surveys: Web-based survey and result analysis will be conducted. This survey will collect users’ 
expectation on the DM-DSS improvement, information requests for decision making, and 
evaluation on the research plans. Also, this survey will inform the users the possible update of 
the DM-DSS following this research project, which will also be used for benchmark.  
 
Drought Information: A systematic framework of forecast drought indices will be established 
in a computer server. Algorithms to compute drought indices as a function of forecast outputs 
(e.g. precipitation, temperature, soil moisture, streamflow) from the research team at UIUC and 
ISWS will be developed, which will be associated with extensive literature review, taking 
advantage of the methods employed within the scientific community on drought prediction. 
 
Real-time Decision Support: Future work will address two remaining questions: 
How to incorporate medium-range climate forecasts (1-month to 3-months & to be provided by 
the drought prediction group) into the DSS framework? How to incorporate the drought 
indicators/triggers (to be provided by the drought information assessment and dissemination 
group) into the DSS framework? We will start to use the results from the pilot forecast study to 
test the method that incorporates medium-range climate forecast for real-time decision making.   
  
Literature review: We will finish the literature with the involvement of other team members. 
The review will be improved by addressing the state-of-art of drought prediction, drought indices 
and triggers and decision making using drought information. We will pay particular attention on 
NASA funded projects on drought management. Our target is a white paper for discussion in 
drought research communication. 
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5. Appendices 
 
A. Survey questions: http://rainier.unl.edu/survey
 
B. Drought Management: A Review (see attached document for the full draft) 
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