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INTRODUCTION 
The primary goal of this project is to develop the seasonal predictive capacity of the 

Drought Monitor Decision Support System (DM-DSS) using Earth science models and 
satellite products. The DM-DSS, in response to the need for accurate, centralized drought 
information, provides a weekly overview of where drought in the United States is emerging, 
lingering, or subsiding. The Monitor presents a single, easy-to-read color map that 
summarizes current information from numerous drought indices and indicators. The map uses 
a new classification system based on a ranking percentile approach to show drought intensity, 
similar to the schemes currently in use for hurricanes and tornadoes. The map also delineates 
regions experiencing longer-term hydrologic drought and shorter-term agricultural drought. 

In related efforts, a limited number of forecast tools are being used to indicate 
whether drought will strengthen or weaken significantly over the coming three months. The 
forecast tools include the Seasonal Drought Outlook (SDO), developed by NOAA’s Climate 
Prediction Center (CPC). The SDO is a blend of art and science, combining short- and long-
term seasonal forecasts, which are still under development. Therefore, one of the urgent 
needs in regard to improving drought monitoring and outlook is to develop and incorporate 
the latest state-of-the-art forecast tools so that the DM-DSS can be used to indicate whether 
drought will strengthen or weaken significantly over weeks and even months into the future. 
Given the growing extent, intensity, and impacts of drought today, such improvements in 
forecasting will allow for significant national savings in economic damages.  

The enhanced DM-DSS will assist society’s response to a drought from a traditional 
“crisis management” scenario, which emphasizes emergency response, to a “risk 
management” approach, which places greater emphasis on preparedness planning and 
mitigation actions. The DM-DSS improvement will be achieved through a systematic 
integration of Earth science research results and the ongoing research in hydroclimatic 
prediction and drought monitoring, forecasting, and management. The decision analysis 
component that translates the drought prediction into particular guidelines for risk-based 
decision making will make the DM-DSS more valuable to end users and strengthen the role 
of Earth science research for more effective drought mitigation in the United States. The 
enhanced DM-DSS is expected to serve users with real-time decision support information 
regarding “what to do now”. 

The project team has three sub-teams led by Co-PI X. Liang (seasonal prediction), PI 
X. Cai (coupling prediction with decision making), and Co-PI J. Ryu (DM-DSS 
enhancement), and coordinated by PI X. Cai.  Frequent communications and exchanges have 
been conducted among the various groups. The project team has maintained collaboration 
with NASA professionals and DSS user representatives, as detailed later in this report. The 
project team has also had regular contacts with NASA Water Resources Program managers. 
We have submitted two intra-year reports (in September 2008 and January 2009, 
respectively). The outputs of the first-year project period include several conference 
presentations and working papers. 

 

PROGRESSES 
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This report presents the progress of the project during its first year, 2008 – 2009.  
The major tasks include a pilot downscaling experiment using the GMAO forecasts, 
forecast improvement for regional applications, sensitivity analysis to initial land surface 
conditions, preparation of DSS users’ survey, and completing the development of an 
algorithm of using short-term forecast for irrigation scheduling decisions. 

Pre-TASK: Literature Review on Drought Management 
A literature review on the subject of drought management was completed. The 

review discusses the current state of knowledge on drought’s driving forces, definition, 
estimation techniques, prediction ability, and management approaches to reduce its 
potential impacts on societies. In addition to highlighting the current state of knowledge, 
the review provides an overview of the current challenges and future roadmap of the 
research progress on the subject of drought management.  The major points of the 
literature review are listed below: 

 Understanding the causes of droughts is still one of the most significant challenges 
facing water resources engineers today. Improved knowledge of climate dynamics 
and teleconnections explained by ocean-atmosphere phenomena, such as the El Niño-
Southern Oscillation (ENSO) has resulted in contributing widespread droughts 
around the globe (Loucks et al., 2005). But there still remains much to be unraveled 
to why such anomalies happen in the first place. Understanding the causes of 
droughts is further complicated by the dynamically changing environment.  

 Although various indices are widely available for national and international 
application, little study has been done focusing on drought forecast indices, which is 
an important measure for future droughts. Recently, more efforts have been directed 
at replacing the conceptual hydrologic model used in the widely used Palmer drought 
severity index (PDSI) with more comprehensive physically-based land-surface 
hydrology models (e.g., Sheffield et al., 2004; Andreadis et al., 2005; Luo and Wood, 
2007; Wang et al., 2009). 

 Drought time series reconstruction using retrospective analysis remains an active area 
of research. Retrospective analysis is helpful to address the question of whether 
recent droughts are the off-products of climate change or just ‘normal’ droughts when 
put into the context of sufficiently long historical records. This question remains open 
for further research. 

 The advancement of predicting long-term droughts hinges on the current accuracy of 
global circulation models, regional climate models and land-surface hydrologic 
models. For example, recent modeling results suggest that sea surface temperature 
(SST) forcing and land-atmosphere feedbacks play a critical role in the forcing of 
long-term droughts (e.g., Schubert et al 2004 and Seager et al 2005). However, much 
remains unresolved on the links and feedbacks   

 Unlike crisis management which emphasizes an emergency response approach, risk 
management places greater emphasis on preparedness planning and mitigation actions 
(Wilhite, 2002). More efforts need to be directed at evaluating the gain from early 
capital investment to mitigate the impact of future droughts.  
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 Given the state of knowledge on the subject of drought management, a future 
roadmap should tackle several fronts which remain open for further research. Forecasting 
droughts with greater certainty (reliability) is needed to ensure the usefulness of such 
information when put in practice. More rigorous handle over the sources of uncertainty in 
forecasting droughts (e.g., uncertainty from GCM’s) is much needed to put confidence 
intervals around the drought estimates. To reap the benefit of drought forecasts and to 
investigate the marginal gain from strategic measures associated with risk management, a 
robust drought risk management approach needs to be devised and applied. Additionally, 
furthering the understanding of the sensitivities, nonlinearities, and thresholds between 
meteorological, hydrological, and agricultural droughts and their socio-economic impacts 
and how infrastructural mitigations may influence such relationships remain unresolved. 
Another potential direction is to utilize the existing rich climatic data to advance the 
understanding of the causes of droughts and why/how they occur in the first place. 
Greater understanding of the physical mechanisms linking regional drought to global SST 
anomalies is essential to improve coupled atmosphere-ocean-land models and 
subsequently to simulate and predict the relevant SST variations, as well as to improve 
the modeling of land/atmosphere interactions. 

TASK1: Ensemble Hydroclimatic Forecast/Prediction  

TASK 1.1: CWRF Downscaling of NASA GMAO Climate Prediction 
During the past project reporting year, we focused on developing the interface for 

the CWRF downscaling prediction system driven by NASA GMAO (Global Modeling 
and Assimilation Office) global model outputs; conducting the initial downscaling 
seasonal predictions from 21 GMAO realizations; and studying the sensitivity of the 
CWRF downscaling result to initial land surface conditions replaced by the observational 
NARR (North American Regional Reanalysis) product. The main results for the latter 
modeling task are summarized in TASK 1.2. 

We have acquired, from Dr. Siegfried Schubert, the NASA experimental climate 
forecasts using the GMAO coupled atmosphere-ocean general circulation model (GCM). 
The GMAO has been established as a core resource in the development and use of 
satellite observations through the integrating tools of models and assimilation systems. It 
predicts global variations of surface and atmospheric circulation at a 10-month lead. 
Currently, the GMAO data are available on a 2.5° longitude by 2° latitude grid at daily 
time interval. They provide the initial surface boundary conditions and the time-varying 
lateral boundary conditions (LBCs) for the CWRF to produce regional downscaling at 
30-km grid spacing. 

A pilot downscaling experiment has been completed using the GMAO forecasts for 
the period of May 1 to October 31, 2007. There are 21 GMAO realizations, each 
initialized by different surface and atmospheric states. Without any bias correction, the 
raw GMAO outputs, including both surface and atmospheric variables, are used to drive 
CWRF. The main purpose of this initial experiment is to identify key problems in the 
downscaling procedure for subsequent improvements.  

Figure 1 illustrates JJA (June-July-August) mean surface air (2m) temperature, 
including the ensemble mean and deviation over the 21 realizations. The CWRF 



5 
 

downscaling result is compared with those observed and simulated by the driving 
GMAO. Clearly, the GMAO contains substantial biases over the whole U.S., while the 
CWRF downscaling provides significant improvements with the ensemble mean 
distribution much closer to observations. On the other hand, there exist large spreads 
across different realizations, centered in the central U.S. and northwest U.S. These 
spreads, caused by internal or natural climate variability, offer a quantitative measure of 
prediction uncertainty. 

Figure 2 depicts JJA mean precipitation, including the ensemble mean and 
deviation over the 21 realizations. As compared with observations, the CWRF 
downscaling generates more realistic (than the driving GMAO) precipitation over the 
North American monsoon region and the coastal areas along the Gulf of Mexico. 
Improvement is also seen over the Upper Mississippi basin. Overestimations, however, 
exist over most of the Missouri and Ohio basins as well as the eastern coast states. They 
can be traced back to the driving GMAO with even more excessive rainfall over these 
regions. This suggests that certain bias corrections or data assimilation are needed to 
improve precipitation prediction at regional-local scales. Like temperature, large 
precipitation spreads due to natural variability also exist in central U.S., requiring 
incorporation of uncertainty in the decision support system. 

Figure 1. JJA mean surface air (2 m) temperature, including the ensemble and deviation 
over the 21 realizations. The upper left, lower left and lower right are the average values 
for CWRF, observation and GMAO respectively, the upper right is the deviation for the 
CWRF. 
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Figure 3 shows daily variations (during summer of 2007) of the ensemble mean and 

deviation for surface air temperature, precipitation, evaporation, and top-1m soil moisture 
content averaged over the Midwest. The large spreads across 21 realizations are evident 
in all these variables, with the respective standard deviation of 2.1°C, 2.25 mm d-1, 0.44 
mm d-1, and 12 mm. They can be used to construct probability distribution functions for 
the decision support system. 

 
Figure 3. Daily variations of the ensemble mean and deviation for evaporation, top-1m 
soil moisture, precipitation, and surface temperature averaged over the Midwest in 
summer 2007. 

Figure 2. The same as 
Fig.1 except for 
precipitation. 
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TASK 1.2: CWRF Downscaling Sensitivity to the Initial Land Surface Conditions 
Since the atmosphere has a dynamic memory of only 1-2 weeks, in addition to sea 

surface temperature (SST) which was prescribed from the driving GCM product, the land 
variables carry the most relevant information that may contribute to the CWRF seasonal 
climate predictive skill. Under this hypothesis, we chose the NARR to replace the 
GMAO to provide the land surface initial conditions for the CWRF downscaling seasonal 
climate prediction. The NARR adopts a 32-km grid, close to that of CWRF, and provides 
3-hourly atmospheric and land data over an extensive area. We selected the 15th 
realization of GMAO as the driving case, integrated the CWRF from May to August 
2007, differing only in initial land surface conditions (soil moisture, soil temperature, 
snow cover and depth) as provided by GMAO and NARR. The results are hereafter 
referred to as CWRF and CWRF+Assi, respectively. 

Figure 4 compares the observed and CWRF modeled monthly mean precipitation 
distributions from May to August, 2007. The differences in initial land surface conditions 
produced substantial differences in precipitation amount, albeit without obvious 
dislocation of the major rain-bands. The mean bias of MJJA precipitation over the entire 
domain decreased from 24mm to -7mm, indicating that the GMAO circulation tends to 
force the CWRF to simulate heavier rainfall, while the NARR gives the opposite but with 
smaller magnitude. Certain techniques for systematic bias correction in the driving 
GMAO conditions are thus desirable. One possible approach is to run CWRF as driven 
by GMAO for a long period and then remove the result systematic differences from the 
observed climatology. This correction is equivalent to only predict the climate anomalies. 
This approach will be tested in the next phase of the project. 

 
Figure 4. Observed and modeled precipitation geographic distribution in May-August, 
2007. 
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Interestingly, the CWRF downscaling skill sensitivity to initial land surface 
conditions was not manifested in the first month. As shown in Figs. 4-5, CWRF and 
CWRF+Assi produced similar results in May over most of the domain except for the 
Northeast, Southeast and North American Monsoon (NAM) regions, where the 
CWRF+Assi result is slightly worse. However, CWRF+Assi provide significant 
improvements in June over the Cascade, July over the Midwest, August over the 
Northeast, July and August over the Southeast. Such delayed responses may result from 
the compromise between the gain from the more realistic NARR initial land surface state 
and the loss due to its inconsistency with the GMAO atmospheric conditions. Figure 5 
also indicates that the initial land surface conditions have little effect on summer rainfall 
over the North Rockies, Central Great Plain and NAM. 

 
Figure 5. Observed and CWRF modeled May-August rainfall averages over 8 key 
regions. 

Figure 6 illustrates MJJA (May-June-July-August) mean top 0.1 m soil moisture 
(mm/mm), evapotranspiration (ET, mm/day) and runoff (mm/day) as simulated by 
NARR, CWRF and CWRF+Assi. In general, CWRF+Assi produced systematically drier 
top-0.1m soil moisture than CWRF. The spatial pattern of soil moisture follows that of 
ET. It seems that the NARR simulated runoff is unrealistically small over most of the 
U.S., whereas the CWRF generated runoff is likely too large. We will compare these 
model results with USGS streamflows to better identify the actual biases. If confirmed, 
the CWRF+Assi result perhaps is more reasonable. Therefore, the assimilation of the 
NARR land surface data (even with just the initial state of soil moisture and soil 
temperature) is expected to benefit the overall CWRF simulation of soil moisture, ET and 
runoff, most significantly over northern U.S. 
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Figure 6. MJJA mean top 0.1 m soil moisture (mm/mm), evapotranspiration (mm/day) 
and runoff (mm/day) as simulated by NARR, CWRF and CWRF+Assi. 

 
Figure 7 compares daily variations of CWRF and CWRF+Assi simulated top-

0.1m and top-1m soil moisture, evapotranspiration and runoff averaged over the Midwest 
during the summer of 2007. The initial soil moisture differences between GMAO and 
NARR were carried throughout the 4-month integration period. This may imply that the 
system was still not fully balanced after 4 months, requiring a better initialization 
procedure for the seasonal downscaling prediction. Note that the modeled ET is similar 
during the first two months but systematically larger by CWRF than CWRF+Assi in the 
following two months. The result suggests that the CWRF+Assi soil water was sufficient 
to sustain the same ET as CWRF in the initial two months, but became a limit factor in 
the following months. These important ET differences explain why CWRF+Assi 
simulated significant smaller precipitation amount than CWRF during July and August 
(Fig. 5). Correspondingly, the wetter soil in CWRF was accompanied with more runoff 
than CWRF+Assi. 
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Task 2: Probability-Based Drought Forecast/Prediction  
 
Task 2.1: Drought Information Extraction for Regional Applications 
 
  To improve the predictability of climate forecast at local watershed scales in 
terms of meteorological anomalies associated with precipitation and temperature forecast 
products, a statistical correction and evaluation technique is developed.  This technique 
applies adjustment procedures to all ensemble members to minimize the error associated 
with a coarser grid. The systematic biases in the CWRF forecasts of precipitation and 
temperature are first examined with four distinct sub-tasks: 1) transformation, 2) 
statistical correction, 3) improvement of forecasts, and 4) skill test for regional 
streamflow forecasts. A statistical correction procedure will then be conducted to 
minimize the spatial and temporal difference between CWRF and the hydrology model 
applied to a specific watershed. This process is conducted using a probability framework 
with normal probability density functions (PDFs). Potential forecast improvements are 
then determined based on the correspondence between the observed conditional mean 
and the conditional forecasts. These measures classify the forecast/observation pairs into 
groups according to the value of the forecast variable and characterize the conditional 
distribution of the observations given the forecasts. Once the forecast improvement and 
bias correction processes are completed, bias-corrected climatological variables (e.g. 
precipitation) from the CWRF’s forecast products are routed through a computational 
routine to derive the forecasted standard precipitation index. The bias-corrected 
climatological variables are also routed through the regional watershed model as a 
forcing to generate streamflow, which is a component of the forecasted hydrologic index. 

Figure 7. Daily 
variations of top-0.1m 
and top-1m soil 
moisture (mm/mm), 
evapotranspiration 
(mm/day) and runoff 
(mm/day) averaged 
over Midwest during 
the summer of 2007. 



11 
 

Figure 4 represents the statistical correction procedure for monthly precipitation, which is 
related to one CWRF grid point with one weather station in the Republican River Basin.  
 

 
 
  As shown in Figure 8, the probability of the initial retrospective forecasts of the 
ensemble mean precipitation from CWRF for a given month is the probability, P(y) along 
the retrospective density function f(y). This P(y) relates to P(x), which produces a “bias-
corrected” forecast, P(y*).  
 
 Figure 9 shows the distribution of the forecasts, observations, and statistically 
corrected forecasts. Obvious differences between the median of forecasts f(y) and the 
observed precipitation f(x) suggest that the forecast may be biased. On the contrary, the 
central tendency and variability between the statistically corrected f(y*) and observed 
data f(x) appear to preserve the same statistical properties such as the mean and variance.  
 

 
 
  An algorithm to compute the hydrologic drought index has been also developed 
and tested.  The procedure utilized in calculating the Log-Standardized Hydrologic 
Drought Index (LSHDI) is to de-seasonalize the logarithm of the monthly average 

Figure 9. Box plots of the 
distributions of 
precipitation observations 
f(x), forecasts f(y), and 
statistically corrected 
forecasts f(y*) in the 
Republican River Basin. 

Figure 8. Bias-
correction procedure of 
precipitation data (mm) 
for CWRF forecast (y) 
to one of observed data 
(x) in the Republican 
River Basin.  
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streamflow by subtracting the long-term mean of the monthly logarithm and then 
dividing by the logarithm of the standard deviation for the given month to create a zero-
mean process. The LSHDI is calculated as:  

i

it
it
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LSHDI
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,




  

where :t  Monthly time step, for t = 1, 2, …, T 
:i  Monthly index, for t = 1, 2, …, 12 
:tY  Logarithm of the monthly average streamflow at time t 

:
_

iY  Long-term mean of the logarithm of the average streamflow in month i 
:i  Standard deviation of the logarithm of the average streamflow in month i 

:,itLSHDI  Hydrologic Drought Index at time t and in month i 

  Like other drought indices such as the Palmer Drought Severity Index (PDSI) and 
Standardized Precipitation Index (SPI), the LSHDI is normalized, which allows direct 
comparisons of diverse drought indices in the regional watershed. The LSHDI is a 
measure of the streamflow abnormality over a period of low flow, average flow, and peak 
flow. Thus, lower index values indicate more severe hydrologic drought conditions 
associated with low flow, while higher index values indicate a greater likelihood of the 
occurrence of flooding due to subsequent peak flows. The range of the index can be 
analogous to PDSI values of -3 to -4 as a severe drought, -2 to -3 moderate drought, 2 to 
3 moderately wet, 3 to 4 extremely wet, and so on.  
 
 Figure 10 shows an example of the 1-month LSHDI in the Republican River Basin 
across three states, including Colorado, Kansas, and Nebraska. As shown in the Figure, 
future hydrologic drought conditions in the basin at the specified time (e.g. hydrologic 
drought forecast in June from May forecast) can be identified by visualizing the forecast 
information available for local decision makers.  

 

Figure 10. Forecasted 
hydrologic drought index 
map using 1-month 
logarithmized streamflow 
forecasts in the 
Republican River Basin. 
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Task 3: Couple Decision Analysis Models for Case Studies  

TASK 3.1:  Use Short-Term Forecast for Irrigation Scheduling Optimization  
The decision modeling group has completed the methodology framework of an 

irrigation decision support system (DSS), which incorporates NOAA’s one-week 
probability-based weather forecast into the decision process. The proposed methodology 
framework consists of a coupled simulation-optimization system that is capable of 
utilizing probabilistic forecasting to assist decision makers (i.e., farmers). As depicted in 
Figure 11, farmers’ decision process involves: a physically-based simulation model 
(SWAP), an optimization framework incorporating the irrigation requirements pertaining 
to the case study (constraints), and NOAA’s probabilistic forecasting of rainfall. 

  
This methodology framework enables us to address two questions: 1) how can we 

consider the uncertainty of the weekly forecast for real-time irrigation scheduling? 2) 
What is the economic value of the forecast for irrigation farmers with differing 
forecasting horizons? The framework is applied to one of the two case study sites 
identified for this project, the Havana Lowlands region, Illinois. 

Unlike other parts in Illinois, the Havana Lowlands study area relies heavily on 
irrigation due to its sandy soil which has a low soil moisture-holding capacity.  Taking 
advantage of previous work, a SWAP model has already been calibrated and verified for 
the case study site (Wang and Cai, 2007). Daily climatic variables such as total solar 
radiation, minimum and maximum air temperatures, average humidity, and average wind 
speed are obtained from the Kilbourne weather station of the Illinois Climatic Network 
(WARM, 2005). Historical daily rainfall data are collected from gages available within 
the vicinity of the study area (Wehrmann et al., 2004). Historical daily probabilistic 
forecasting data of rainfall up to seven days into the future are purchased from the 
National Weather Service’s Service Records Retention System. All the data are compiled 
for the years of 2002 through 2006.  
 The objective of the DSS optimization framework is to maximize farmers’ 
benefits (expected value) over an entire irrigation season by repeatedly answering two 
questions: should we irrigate? And if we decide to irrigate, how much should we irrigate? 
The DSS framework simulates the farmers’ decisions at the daily temporal scale and 

 

Figure 11. Conceptual flowchart 
of the proposed methodology 
framework. 
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maintains the mass balance of soil moisture and accumulating evaportranspiration as 
farmers’ decisions progress through the irrigation season. Thus, the irrigation decisions 
are optimized 133 times (May 1st to September 10th) in a sequential fashion. As depicted 
in Figure 12, decisions are made on daily basis in a moving window fashion, where 
today’s irrigation decision of how much to irrigate is optimized based on existing 
conditions (today) and forecasted climatic conditions (future) over a maximum of one 
week.  

The probabilities associated with each of the future 7 days is computed based on 
historical 7-day probabilistic forecast by NOAA in Mason County, IL during the years of 
2002 to 2006. The historical forecasts of rainfall data during the growing seasons of the 
five years were compiled into 11 categories as described in Table 1. 

  

 
Historical probabilistic forecasts of the study area show that the reliability of 

forecasts substantially changes with the change in forecast horizon (Figure 13). For 
example, the probability of correctly predicting a rainfall event on day t+1 is much more 

Table 1. List of categories from NOAA’s weekly rainfall forecasts in Mason 
County, IL. 
Category Description 
1 No rain 
2 Chance of rain is between 20 and 40% 
3 Chance of rain is between 40 and 60% 
4 Chance of rain is between 60 and 80% 
5 Chance of rain is between 80 and 100% 
6 Chance of showers and thunderstorms is between 20% and 40% 
7 Chance of showers and thunderstorms is between 40% and 60% 
8 Chance of showers and thunderstorms is between 60% and 80% 
9 Chance of showers and thunderstorms is between 80% and 100% 
10 Showers and thunderstorms likely 
11 Some thunderstorms may contain heavy rainfall 

 

Figure 12. Schematic of 
the moving-window 
stochastic optimization 
framework of irrigation 
in real-time. 
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pronounced than the same probability on day t+7. More specifically, based on the 
collected historical data, the reliability of predicting a no-rain event on the following day 
as compared to the seventh day into the future diminishes gradually from 94% to about 
76%. Moreover, the accuracy of predicting rain decreases from about 45% to 37%. It is 
interesting to note that based on the collected five years of historical probabilistic 
forecasts, NOAA’s probabilistic forecasts are more accurate in predicting no rainfall 
events than rainfall events (Figure 13). 

 
Figure 13. Reliability of predicting ‘rain’ and ‘no rain’ events on future days with 
different forecasting horizons; data is based on five years of NOAA’s historical daily 
probabilistic forecasts for the study area. 

For each of the 11 categories (Table 1), four rainfall scenarios are described along 
with their corresponding probabilities (PNo Rain + PRain = P No Rain + P Little Rain + P Moderate Rain 
+ P Heavy Rain = 1) and rainfall depth values. For each category and for each day, the 
probabilities are computed based on historical data (see Figure 14). The rainfall depth 
values are simply the historical mean values. The probabilities and their associated 
rainfall depth values differ for the various days of the forecasting horizon. So a 50% 
chance of rain tomorrow will carry a different set of probabilities of rain and no-rain, than 
the same probability of rain on the 7th day of the forecasting horizon. Thus, to compute 
the maximum benefit, an expected value over all possible combinations of forecasting 
scenarios is necessary. To reduce the computational requirements, the number of rainfall 
forecasting scenarios is reduced to two (rain or no-rain); this would reduce the total 
number of simulations from 16384 (47) to 128 (27) times per optimization per day. 

 
Three different scenarios are considered: 1) no forecast; 2) perfect forecast; and 3) 

imperfect forecast. All three scenarios are simulated for the same total time period (8 

 

Figure 14. Rainfall 
probabilistic scenarios to 
be determined from 
historical data.  
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days) to permit comparison among their results while avoiding any effects due to 
changing the forecast horizon. Note, whenever the forecast horizon is less than 7 days, 
SWAP is still simulated for 8 days and no rainfall is assumed during the remaining days 
as a conservative choice. 

As shown in Figure 15, for the no forecast scenario (Scenario 1), regardless of the 
forecast horizon (0 to 7 days), SWAP is simulated for 8 days (1 day of known rain and 
7days of ‘no rain’). Under the perfect forecast scenario (Scenario 2), when the perfect 
forecast horizon is set to zero (i.e., t*=1, Figure 15), scenarios 1 and 2 are identical. 
When the perfect forecast horizon is set to 7 days into the future (i.e., t*=8, Figure 15), 
SWAP is simulated for two intervals (1 day of known rain and 7days of perfect forecast 
of rain). When the forecast horizon varies between 0 and 7 days (1 * 8t  ), SWAP is 
simulated for three intervals (1 day of known rain, t* – 1 days of perfect forecast of rain, 
and 8 – t* of ‘no rain’). Unlike Scenario 2, Scenario 3 replaces the perfect forecast 
interval with an ensemble of possible imperfect forecasts. The number of ensembles of 
imperfect forecasts depends on the forecast horizon and the adopted number of possible 
rainfall outcomes (i.e., no rain, low rain, moderate rain, heavy rain). 

 

 
 

Results are compared to two baselines: historical data and rule-based data. Rule-
based irrigation events are obtained for all five years (2002 through 2006) from 
employing the rule-based simulations of Wang and Cai (2009) without forecasting. The 
rule-based technique relies on a set of if-then statements based on threshold measures of 
water moisture content in the soil column; further details about the rule-based algorithm 
are available in Wang and Cai (2009).  Next, we present the results based on the three 
proposed scenarios of: Scenario 1 (no forecast), Scenario 2 (perfect forecast), and 
Scenario 3 (imperfect forecast). 

Scenario 1 (No Forecast): Comparing the results of the simulation-optimization 
with no forecast (Scenario 1) with the results of the rule-based simulation and historical 
data shows a consistent increase in benefit attributed to optimization (See Figure 15). The 
results translate to a 50.5% improvement on average in total profit from optimization 
(Scenario 1) over the rule-based approach. Secondly, the rule-based results outperform 

 

Figure 15. The three 
proposed forecasts 
scenarios: 1) no forecast; 
2) perfect forecast; and 
3) imperfect forecast. 
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the historical performance in year 2002 by 21%. Thirdly, both the rule-based and 
simulation-optimization results show greater benefits in wet years than in dry ones – an 
intuitive finding as with greater rainfall depth, less irrigation is needed (lower irrigation 
cost). However, as shown in Figure 16, a dramatic relative increase in benefit is attained 
from using the simulation-optimization framework (as compared to rule-based) in dry 
(2002 and 2005) and normal (2006) years while the relative increase in wet (2003 and 
2004) years is marginal. Thus, the drier the season is the greater gain in performance 
from the simulation-optimization framework as compared to the rule-based simulation 
results. This is also clearly shown in Figure 17 with the addition of perfect forecasting 
information into the coupled simulation-optimization framework. 

 
Scenario 2 (Perfect Forecast): In Figure 17, the results of Scenario 2 are 

presented with different horizons of perfect rainfall forecasts (0-7days). Hence, Scenario 
2 with 0-day perfect forecast is simply identical to Scenario 1 (no forecast). The relative 
gains in profit (as compared to the rule-based results) in dry, normal, and wet years are 
56-93%, 47%-53%, and 1-14%, respectively, where the lower and upper values of the 
ranges correspond to the 0-day and 7-day perfect forecasts, respectively (Figure 17). The 
relative gain in profit from perfect forecasting as compared to Scenario 1 (no forecast) 
ranges between about 1% (in 2006 – a dry year) to 9% (in 2003 – a wet year) (See Figure 
18).  Generally the drier the season is the smaller the gain from forecasting. This is 
because when the forecasts always predict no rainfall, not much gain is achieved from 
forecast information as irrigation will continue to occur. On the other hand, in wet 
seasons, and knowing beforehand of oncoming rainfall events, forecasting would help 
reduce the number of irrigation applications, thus, reduce total cost. 

Figure 16. Comparison 
between the optimal 
solutions from Scenario 1 
(no forecast), and the 
rule-based and historical 
scenarios. 
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Scenario 3 (Imperfect Forecast): In Scenario 3, uncertain forecasts are used to 

replace the previously assumed perfect forecast information. Although probabilistic 
forecasts for each of the days are uncertain information with differing level of reliability, 
the results of Scenario 3 are somewhat similar to Scenario 2 with one main exception.  
Due to the decline of reliability in the probabilistic forecasts at the further days, the 
increase of forecast horizon would improve the optimal solution to a certain threshold 
point in time beyond which the value of additional forecast is outweighed by the lack of 
reliability. In Figure 19, incorporating uncertain forecasts outperforms Scenario 1 (no 
forecast) but start to decline beyond a threshold.  The threshold values of the optimal 
forecast horizon (points of inflection) are: 4, 4, 5, 6, and 2 days for the years of 2002 
through 2006, respectively. The results translate to a 48% and 5.4% improvements on 
average in total profit from the imperfect forecast scenario (Scenario 3) over the rule-
based approach (baseline) and the no forecast scenario (Scenario 1), respectively. The 
relative gain in profit from imperfect forecasting as compared to Scenario 1 (no forecast) 

Figure 17. Results of 
Scenario 2 (perfect 
forecast) with 
different perfect 
horizons (0-7days). 

Figure 18. Relative 
gain in profit from 
perfect forecasting as 
compared to Scenario 
1 (no forecast). 
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ranges between about 2.4% (in 2006 – a dry year) to 8.5% (in 2004 – a wet year) (See 
Figure 20). 

 

 

 

 

TASK 3.2:  Evaluation of Hydro-climatic Forecasts  
 Under this task we tested a method to evaluate the value of mid-term hydro-climatic 
forecasts using a hypothetical reservoir operation case under drought. Many previous 
efforts have been made to predict future hydrologic conditions that help system managers 
and agriculture producers to initiate responses in advance of drought events, thus 
minimizing the economic losses. However, even if the important role of such forecast is 
often highlighted in the hydrologic and water resources planning and management 

Figure 19. Results of 
Scenario 3 (imperfect 
forecast) with different 
perfect horizons (0-
7days). 

Figure 20. Relative gain 
in profit from imperfect 
forecasting as compared 
to Scenario 1 (no 
forecast). 
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community, implementation of such forecast information into real-world problems is 
limited. Perhaps, uncertainty embedded in the forecast system and/or missing attributes 
justifying economic and environmental gains from forecasts discourage water managers 
from incorporating forecast information into their critical operational decisions. This 
issue was also highlighted at the 33rd climate diagnostic and prediction workshop 
organized by National Oceanic and Atmosphere Administration (NOAA) and the 
National Drought Mitigation Center (NDMC) held in Lincoln, Nebraska, 2008.  
 Over the past year of this project, we developed a prototype evaluation framework, 
as part of this project’s effort (Ryu et al. 2009). The results show that the value gained 
from forecast information is substantial. At this moment, the framework was tested with 
the reservoir operations of Daechong Dam in the Republic of Korea. Figure 21 shows 
that the most appropriate policy associated with the low flow sequences during drought is 
to steadily draw down the reservoir during and between the two Asian monsoon windows 
(week 39 thru week 23 in the following year).  
 Another important finding from the test indicates that the reservoir system should be 
operated in a similar fashion when forecasted flows are expected to be less than or equal 
to 40% of the normal flows. Thus, the percentage (40%) can be defined as a drought 
trigger. Further investigation and applications of the evaluation processes in the study 
basins (e.g. Republican River Basin) will be conducted in the next project year.  

 
Figure 21. Reservoir operations with hydrologic forecast inputs during a drought event 
(1994-1995). Note that solid-black line indicates hydrologic reservoir operations and 
others represent system operations with several hydrologic forecast inputs. Regardless of 
the accuracy of forecasts, forecast-based system operations outperform historical 
operations, which had no forecast information employed (Ryu et al. 2009). 
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Task 4: Benchmark Development: Research Extension: Communication with users  
We have been working with National Corn Growers Association (NCGA) for users’ 
survey.  We have been also working with Irrigation Association (IA) for the 
demonstration of the use of short-term forecast for irrigation scheduling.  The contact 
person of NCGA is Richard Glass Vice president of NCGA; the contact person of IA is 
Erin D. Field, Agriculture Affairs Director, Irrigation Association.  Both NCGA and IA 
will provide their existing mechanisms for conducting users’ surveys and demonstrating 
decision making tools.  Our extension collaborators also include local agencies such as 
the Nebraska Farm Bureau and Central Illinois Irrigated Growers Association. 
 During the past several months, the drought information assessment and 
dissemination group led by J. Ryu had a series of meetings to discuss and develop an 
initial draft of an online survey questions to be distributed to the members of NCGA. The 
main purpose of this survey is to identify the perceptions of irrigating and non-irrigating 
corn growers across the country in regards to forecast data, the usefulness of forecasts to 
them, the optimal forecast timescale for decision making (15, 30, 90 day forecasts, etc.), 
and at what time of the year forecasts are most beneficial. Understanding the needs of 
end-users is essential for designing and disseminating appropriate forecast information. 
The survey also attempts to understand their perception of drought and their needs related 
to drought prediction so that the Drought Monitor-Decision Support System (DM-DSS) 
and Seasonal Drought Outlook (SDO) produced by the NOAA’s Climate Prediction 
Center (CPC) will be more useful and meaningful within their forecast-based decision 
making. 

An initial draft of survey questions was developed by Co-PIs J. Ryu, C. Knutson, 
and M. Svoboda with inputs from other team members. The questions were generated 
and selected to match our intended project objectives and goals. The questionnaire 
commences with descriptive questions such as location, education, and farm ownership. 
It also employs a series of closed-ended questions such as categorical, numerical and 
ordinal questions to generate the quantitative data that we will utilize in meeting our 
objectives.  

An initial survey was conducted by asking survey questions to the board members 
of the NCGA, who wanted to gain a better understanding of the type of questions before 
disseminating the survey questions to the members of the organization.  The current 
status of the survey is discussed herein and the survey questions are included as an 
appendix in this report. 

Another extension effort is to develop a system that facilitates the involvement of 
users using visualization technology with geographic information system (GIS). We have 
proposed and started developing a framework as shown in Figure 22, including Web-
based GIS (WGIS) and open source platforms, servers, geospatial database (PostGIS), 
and ka-map utilizing Asynchronous JavaScript XML (AJAX). A number of built-in 
features will promote flexibility as much support as that of other the thirty-party GIS 
packages, including Google Maps/Yahoo Maps/Virtual Earth.  This open source web 
architecture can be coupled with Mapserver (http://mapserver.gis.umn.edu/), which was 
developed by the University of Minnesota. These packages are derived from open source 
web-mapping technologies that are compliant with Open Geospatial Consortium (OGC) 
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standards.  It is anticipated that applications of these tools will be suitable for a variety of 
GIS web applications, especially the NASA project.  

 
Figure 22. Integrating MapServer into ka-map utilizing AJAX technology. 

PROJECT MANAGEMENT 
Please see the attached Project Schedule and Management Metrics. The finished, 
ongoing & on schedule and ongoing & behind schedule are marked by different shades in 
the metrics. The project is basically on schedule and only the users’ survey during the 
second six-month is not finished as scheduled yet. However, this will be finished soon 
and will not affect the progress of other work. 

OUTPUTS 
Cai, X., M. Hejazi and D. Wang. “Using weekly weather forecast for real-time irrigation 
scheduling optimization,” presented at AGU 2008 Fall Meeting, San Francisco. 

Hejazi, M. and X. Cai, “Drought: A review,” working paper. 
Ryu, J., R. Palmer, S. Jeong, and S. Park  “An evaluation framework for hydrologic 
forecasts in system operations during droughts”.  Submitted to Water Resources Research 
(Note: this paper resulted from a pilot study that is co-sponsored by this NASA project 
and another project.) 
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WORK PLAN FOR FY 2009-2010 

 Planned CWRF downscaling Efforts 
1. Conduct a more systematic investigation of CWRF downscaling sensitivity to 

initial land surface conditions. Experiments include an ensemble of the NARR 
initial land surface states of 1-day apart to replace the GMAO product for the full 
21 realizations. 

2. Compare CWRF downscaling outcomes with high-quality observations to better 
evaluate the model skill and sensitivity. In particular, we will collect the USGS 
streamflow measurements, Illinois in situ observations of soil moisture and soil 
temperature, and NASA soil moisture retrievals. 

3. Conduct CWRF downscaling experiments over multiple years to develop a 
robust bias correction approach. This will facilitate the prediction of interannual 
anomalies that are expectedly more feasible and credible than that the full field 
(climate plus anomalies). This task, however, will very much depend on the 
availability of the GMAO model products from NASA. 

4. Develop model infrastructure for CWRF to produce downscaling 1-10 days 
weather forecasts. These high-resolution forecasts are expected to be more 
realistic than the existing products from NOAA GFS products and thus provide 
more credible information (especially precipitation, ET, runoff, soil moisture) for 
the use of the DSS component of this project. 

 Planned efforts for coupling prediction with real-time decision support 
1. Incorporate medium-range climate forecasts (1-month to 3-months & to be 

provided by the drought prediction group) into the DSS framework. The results 
from the pilot forecast study will be used to test the method with the incorporated 
medium-range climate forecast for real-time decision making. The challenge lies 
in the computational burden in providing updated medium forecasts at each time 
point in the season when decisions are to be made by farmers.  

2. Incorporate the drought indicators/triggers (to be provided by the drought 
information assessment and dissemination group) into the DSS framework. This 
will depend greatly on the suggested drought indicators/triggers. 

3. Apply the downscaled 1-10 days weather forecasts to the current form of the DSS 
framework. The high-resolution weather forecasts are expected to be more 
realistic than the existing current medium range climate forecasts. In TASK 3.1, 
we only assumed that precipitation to be forecasted. Using the results from the 
CRWF downscaling effort provide more complete information (e.g. precipitation, 
ET, runoff, soil moisture). However, some assumptions may need to be adopted to 
reduce the number of scenarios necessary to represent the uncertainly of forecasts 
(i.e., using fewer ensembles).  

4. Develop algorithms to compute drought indices as a function of forecast outputs 
(e.g. precipitation, temperature, soil moisture, streamflow) from the research sub-
teams at UIUC and ISWS, which will take advantage of the methods employed in 
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the scientific community on drought management; a framework for computing the 
drought forecast indices will be established on a computer server. 

 Planned extension efforts  
1. Conduct a web-based survey and result analysis. This survey will collect users’ 

expectations on the DM-DSS improvement, information requests for decision 
making, and evaluation on the research plans. Additionally, this survey will 
inform users about the possible update of the DM-DSS following this research 
project. 

2. Implement the web-based Geographic Information System (WGIS) and built-in 
functions that provide friendly interfaces between the DSS and users.  

3. Present the immediate findings from this project in professional meetings and 
workshops and prepare peer-reviewed publications 

PUBLICATIONS 
Andreadis, K.M., E.A. Clark, A.W. Wood, A.F. Hamlet, D.P. Lettenmaier, (2005). 20th 

Century drought in the conterminous United States. J. Hydromet. 6, 985-1001. 
Loucks, D.P., E. van Beek, J.R. Stedinger, J. Dijkman, M.T. Villars, (2005). Water 

Resources Systems Planning and Management: An Introduction to Methods, Models 
and Applications. UNESCO Publishing. 

Luo, L., E. F. Wood, M. Pan, (2007): Bayesian merging of multiple climate model 
forecasts for seasonal hydrological predictions, J. Geophys. Res. 112, D10102, 
doi:10.1029/2006JD007655. 

Ryu, Jae, R. Palmer, S. Jeong, S. Park, (submitted). An evaluation framework for 
hydrologic forecasts in system operations during droughts. Water Resources 
Research.  

Schubert S.D., M.J. Suarez, P.J. Pegion, R.D. Koster, J. T. Bacmeister, (2004). On the 
Cause of the 1930s Dust Bowl. Science, 303, 1855-1859, DOI: 
10.1126/science.1095048. 

Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, (2005). Modeling of tropical 
forcing of persistent droughts and pluvials over western North America 1856-2000. 
J. Climate, 18, 4068-4091. 

Sheffield, J., G. Goteti, F. Wen, E.F. Wood, (2004). A simulated soil moisture based 
drought analysis for the United States, J. Geophys. Res., 109, D24108, 
doi:10.1029/2004JD005182. 

Wang, A., T.J. Bohn, S.P. Mahanama, R.D. Koster, D.P. Lettenmaier, (in press). 
Multimodel Ensemble Reconstruction of Drought over the Continental United 
States. Journal of Climate. 

Wang, D., X. Cai, (2007). Optimal Estimation of Irrigation Schedule - An Example of 
Quantifying Human Interferences to Hydrologic Process. Adv. Water Resour., 30(8), 
1844-1857. 

Wang, D., X. Cai, (2009). Irrigation scheduling – the role of weather forecasting and 
farmers’ behavior. Journal of Water Resources Planning and Management, in press. 
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APPENDIX 
 

Survey of the National Crow Growers Association Actions Teams 
National Drought Mitigation Center 

 
Staff members of the National Drought Mitigation Center (NDMC) have developed an 
internet survey to be administered to Action Team members of the National Crow 
Growers Association (NCGA), as well as members of the organization’s governing board 
(see attached). The NCGA has organized seven Action Teams throughout the corn 
growing areas of the United States to provide advice and assistance on specific issues 
(e.g., water quality and conservation, research and business development, joint trade, 
policy, biotech, ethanol, etc.). There are 12-15 corn growers on each Action Team, and 
they’re some of the most active farmers within the organization. Along with the 15 
members of the corn board, we will be sending out the survey to a total population of 
approximately 110 corn growers across the cornbelt. It is expected that the survey will be 
administered towards the end of the corn planting season in late May.  
 
The survey is intended to be a scoping survey to identify general perceptions and 
potential uses of climate, streamflow, and soil moisture forecasts for irrigated and dryland 
corn production. The results of the survey will then be discussed in depth during 
stakeholder workshops in the Fox River Basin of Illinois and the Republican River Basin 
in Nebraska in 2010. However, in addition to corn growers, other stakeholders from 
relevant sectors will also be included in these workshops. It was merely felt that focusing 
on the corn growers would be a good place to initiate the research since they make up the 
largest percentage of crop growers in the U.S., and use the greatest amount of irrigation 
water for grain crop production. 
 
In developing the survey, a considerable amount of time was spent researching the 
literature on the use of climate forecasts among agricultural producers. Several of the 
questions in our survey were tailored to allow comparisons with related studies on the 
subject, as well as with national crop and irrigation surveys (i.e., 2007 Census of 
Agriculture and the 2003 Farm and Ranch Irrigation Survey). To some degree, this will 
allow us to analyze the representativeness of our sample population, and to ensure our 
research contributes to the scientific knowledge base. The survey questions use a 
combination of closed and open-ended formats to allow for more in-depth and 
personalized answers where appropriate.  



26 
 

 
NDMC staff also researched several new software packages to assess which one would 
be best for designing and carrying out the internet survey. In total, three software 
packages were assessed (i.e., phpQuestionnaire, Survey Crafter Professional, and 
Qualtrics). It was decided that Qualtrics best met the project needs because of its 
versatility and range of analysis features. Fortunately, the expensive Qualtrics software 
has been made available to the NDMC for a one-year trial basis from another research 
group at the University of Nebraska-Lincoln for a much-reduced license fee.  
 
At the time of this report, the survey is being finalized using the Qualtrics software and a 
survey protocol report is being developed for submission to the University of Nebraska-
Lincoln Institutional Review Board. All formal surveys that will result in generalizable 
knowledge (e.g., publications) conducted by UNL staff must be obtain IRB approval to 
ensure that the rights of survey participants will be recognized and maintained. This 
approval is expected by the middle of May, 2009.  



Corn Farmer’s Thoughts on Long-Term Weather Forecasts 
NOAA-SARP Research Study 

May 2009 
 
 
1. In which State is the majority of your farming operation located?  
 
 
 
 
2. In which County is the majority of your farming operation located?  
 
  
 
 
3. What is your age? ____ years old 
 
 
4. Which category below best describes your formal years of education? 

o Less than 9th grade 
o 9th to 12th grade (no diploma) 
o High school diploma 
o Some college, but no degree 
o Technical/Associate Degree/Junior College (2yr/LPN) 
o Bachelors Degree (4-yr, BA, BS, BN) 
o Graduate Degree (MS, MA, PhD, etc.) 

 
 
5. Which category best describes your farm operating structure in 2009?  
    (please select all that apply) 

o Full owner 
o Part owner 
o Landlord 
o Tenant 
o Other (please specify)  

 
 
6. Do you manage the day-to-day operations of the farm? 

o Yes 
o No 

 



7. How do you currently get your weather forecast information? 
    (please select all that apply) 

o Data Transmission Network 
o Face-to-face discussion with paid consultants 
o Face-to-face discussion with university weather experts 
o Face-to-face discussion with government weather experts 
o Internet 
o Magazines  
o Local meetings or conferences 
o Newspaper 
o Radio 
o Television 
o Word-of-mouth (e.g., spouse, coffee shop, etc.) 
o Other (please specify)  

 
 
8. Who is your most trusted source for weather forecast information? 
    (please rank the answers; 1 = most trusted; 7 = least trusted) 

____ Your spouse 
____ Your neighbors 
____ University extension agent 
____ Television weatherperson  
____ Private consultant 
____ University professor 
____ Government weather forecaster 
____ Other (please specify)  

 
 
If you irrigate, please proceed to question 9. 
If you do not irrigate, please proceed to question 13. 
 
9. How much corn do you irrigate for grain or seed? 

o 1 – 9 acres 
o 10 - 49 acres 
o 50 - 69 acres 
o 70-99 acres 
o 100 – 139 acres 
o 140 – 179 acres 
o 180 - 219 acres 
o 220 – 259 acres 
o 260 – 499 acres 
o 500 – 999 acres 
o 1,000 – 1,999 acres 
o 2,000 or more acres 



10. How much corn do you irrigate for silage and greenchop? 
o 1 – 9 acres 
o 10 - 49 acres 
o 50 - 69 acres 
o 70-99 acres 
o 100 – 139 acres 
o 140 – 179 acres 
o 180 - 219 acres 
o 220 – 259 acres 
o 260 – 499 acres 
o 500 – 999 acres 
o 1,000 – 1,999 acres 
o 2,000 or more acres 

 
11. What are your primary sources of water for corn irrigation? 
      (please select all that apply) 

o On-farm surface water 
o Well water 
o Water from off-farm suppliers 

 
12. When do you typically irrigate corn? 
      (please select all that apply) 

o January 
o February 
o March 
o April 
o May  
o June 
o July 
o August 
o September 
o October 
o November 
o December 

 



 
13. How important are the following parameters in your farm decision making? 
 
    Low    Moderate   High         Not applicable 
Temperature   
Rainfall 
Snowfall  Use radio buttons and a scale from 1-5 for all parameters 
Streamflow 
Soil moisture 

Please include any comments  
 
 
14. If you had access to a 90-day forecast for the following parameters that was 75-100% 
accurate, how likely would you be to use that forecast in farm decision making? 
 
         Low  Moderate     High   Not applicable 
    Likelihood        Likelihood Likelihood 
Temperature   
Rainfall 
Snowfall   Use radio buttons and a scale from 1-5 for all parameters 
Streamflow 
Soil moisture 
 
 
15. How likely is it that you would use a 90-day forecast for the following activities? 
 
         Low  Moderate     High   Not applicable 
    Likelihood        Likelihood Likelihood 
 
Select crops     
Schedule pesticide applications 
Schedule nutrient applications 
Schedule machinery maintenance 
Conduct crop inspections 
Purchase crop insurance  Use radio buttons and a scale of 1-5 for all parameters 
Schedule harvest 
Schedule planting 
Schedule tillage 
Schedule irrigation 
Choose seed varieties 
Choose seeding rates 
Determine forward contracting 
Other __________________ 
Other __________________



16. What’s your impression of the current accuracy of weather forecasts? 
 
     Percent Accuracy 
  0% 10%  20% 30%  40% 50% 60% 70%  80% 90% 100% 
1 day 
7 day 
14 day 
30 day   Use radio buttons for all accuracy levels 
60 day 
90 day 
 

Please include any comments  
 
 
17. Let’s say that it’s 90 days prior to your typical planting date. If forecasters predicted a 
drought during the upcoming growing season, would your choices about what to produce, how 
to produce it, or how much to produce be different? 

o Yes 
o No 

Please explain your answer  
 
 
18. Again, let’s say it’s 90 days prior to your typical planting date. If forecasters predicted a 
drought during the upcoming growing season with a 75-100% confidence, would your choices 
about what to produce, how to produce it, or how much to produce be different? 

o Yes 
o No 

Please explain your answer 
 
 
19. If all forecasts were 100% accurate, what forecast time horizon do you think would be most 
useful for your operation? 
(please rank them in order of importance; 1 = most important and 5 = least important) 
 

____ 1 - 7 days 
____ 8 - 14 days 
____ 30 days 
____ 60 days 
____ 90 days 

 
Please include any comments  

 
 



20. During which months would it be most useful for you to receive a 90-day climate forecast? 
      (please select all that apply) 

o January 
o February 
o March 
o April 
o May  
o June 
o July 
o August 
o September 
o October 
o November 
o December 

 
 
21. What level of accuracy would you need in a 90-day forecast in order for you to use it in 
making farm management decisions? 

 
   10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
 

o I would not use a 90-day forecast to make farm management decisions 
 
 
22. Have you experienced a significant drought within the last 5 years? 

o Yes 
o No 

 
 
23. How vulnerable do you think your operation is to drought? 
 
 Low Vulnerability   Moderate Vulnerability   High Vulnerability 
 

1 2 3 4 5 6 7 
 
 
24. Do you expect to experience a significant drought within the next 10 years? 

o Yes 
o No 
o Maybe 

 
 



25. How many total acres do you own? 
o 1 – 24 acres 
o 25 – 49 acres 
o 50 - 99 acres 
o 100 – 249 acres 
o 250 – 499 acres 
o 500 – 999 acres 
o 1,000 – 1,999 acres 
o 2,000 or more acres 

 
26. How many acres of corn did you harvest in 2008 for grain or seed? 

o 1 – 24 acres 
o 25 – 49 acres 
o 50 - 99 acres 
o 100 – 249 acres 
o 250 – 499 acres 
o 500 – 999 acres 
o 1,000 – 1,999 acres 
o 2,000 or more acres 

 
 
27. How many acres of corn did you harvest in 2008 for silage and greenchop? 

o 1 – 24 acres 
o 25 – 49 acres 
o 50 - 99 acres 
o 100 – 249 acres 
o 250 – 499 acres 
o 500 – 999 acres 
o 1,000 – 1,999 acres 
o 2,000 or more acres 

 
 
28. What was the amount of your total gross farm sales in 2008? 

o Less than $1,000 
o $1,000 - $2,499 
o $2,500 - $4,999 
o $5,000 - $9,999 
o $10,000 - $24,999 
o $25,000 - $49,999 
o $50,000 - $99,999 
o $100,000 - $249,999 
o $250,000 - $499,999 
o $500,000 - $999,999 
o $1,000,000 or more 



Additional Comments: 
 
 
 
 
 
 
 
 
If you have questions about the survey or would like to learn more about drought, please 
contact: 
 
Nicole Wall 
National Drought Mitigation Center 
School of Natural Resources 
University of Nebraska-Lincoln 
Lincoln, NE 68583-0962 
(402) 472-6776 
(402) 730-5996 
Email: nwall2@unl.edu 
Website: http://drought.unl.edu 



 

Project Schedule and Management Metrics 

 Months 1-6 Months 7-12 Months 13-18 Months 19-24 Months 25-30 Months 31-36 
Task 1 
Input  
Output 
Deliver 

 
Original ESRR+   
Processed ESRR 
Data report 

 
Processed ESRR  
Climate prediction 
 

 
Climate prediction 
Hydro prediction  
Prediction report 

 
Assimilation targets 
Ensemble prediction 
Initial pred. system 

 
Users feedback 
Improved prediction 
Final pred. system  

 
 
Documentation & 
Publication 

Task 2 
Input 
Output 
Deliver 

  
Current DM-DSS 

DM-DSS with prediction capability  
DM-DSS ready to adopt prediction   

 
Ense. hydro predict 
Drought predict 
DM-DSS coupled 
with prediction   

 
Users feedback 
Improved prediction 
Final enhanced 
DM-DSS  

 
 
Documentation & 
Publication  
 

Task 3 
Input 
Output 
Deliver 

 
Original ESRR   
Processed ESRR 
Data report 

 
 

General stochastic decision model; 
interface with drought prediction  

 
Drought predict. 
Irrigation schedule 
Optimization tool 
for irrig. scheduling  

 
Users feedback 
Improved deci. tool 
Final optimal tool 

 
 
Documentation & 
Publication 

Task 4 
Input 
Output 
Deliver  

 
Users feedback 
Survey assessment 
Survey report 

 
Users feedback 
Survey assessment 
Survey report 

 
Historical droughts 
Retrospective  
verification 
Survey report 

 
Processed ESRR  
Drought prediction  
Sci. assess. report 
Survey report 

 
Users feedback 
Assessment 
Survey report 

 
 
Documentation & 
Benchmark report 

% of budget*  10% 30% 50% 70% 85% 100% 
No. of delivery* 3  8 13 17 21 
% of task finish. * 
 

10% 35% 55% 75% 85% 100% 

Possible problems 
– solutions  
 
 

Data reliability – 
Systematic check 
and verification 
sensitivity analysis  

Model robustness, effectiveness of 
procedures  –  evaluating with 
performance measures (prediction 
accuracy and uncertainty and users’ 
responses); retrospective verifications  

Task delay, time 
conflict  – Team 
coordination, early 
warning 
  

Quality of users’ 
feedback  – pre- 
illustration, post - 
systematic check, 
sample interviews 

Quality of 
documentation  – 
Crossover peer 
review, group 
evaluation    

Milestones Data ready for use Climate prediction  Hydrologic 
prediction  
& decision support   

Improved  
prediction & 
decision, system 
integration  

Final enhanced 
DM-DSS  

Benchmark report 
 

 
Finished Ongoing & on 

schedule 
Ongoing & behind 

scheduling 


