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1.0 EXECUTIVE SUMMARY 
 
NASA developed a partnership with the Environmental Protection Agency (EPA) to 
investigate the feasibility of using NASA data and data products to improve EPA’s capability 
to model watershed nonpoint source pollution.  The EPA is responsible for protecting various 
bodies of water in the U.S..  The primary guideline for EPA’s mandate is the Clean Water 
Act of 1972 (Federal Water Pollution Control Act, 1972).  One of the regulations spelled out 
in this Act is that EPA must track the Total Maximum Daily load (TMDL) for any 
watershed.  In short, the TMDL defines the amount of pollution that can be carried by water 
before it is determined to be “polluted”.  The problem of nonpoint source pollution is a 
spatially and temporally complex issue.  There are essentially two ways for EPA to do this: 
one is through in-stream measurements and sampling, and two, through modeling the streams 
response to storm runoff and pollution loadings.  The first option would be prohibitively 
expensive and impractical for the entire U.S..  The modeling approach is the only practical 
solution.  To do this, EPA developed the BASINS (Better Assessment Science Integrating 
Point and Nonpoint Sources) (USEPA, 2001) decision support tool.  The models in BASINS 
currently rely on point-based meteorological and pollution measurements.  This study 
focused on HSPF, an hourly precipitation-runoff simulation model. Our premise is that by 
incorporating NASA remote-sensing data, many of the critical input variables to BASINS 
can be improved spatially.  Using satellite gridded data and data products for model inputs 
might enhance BASINS output results, thereby leading to better decisions regarding water 
quality, leading to improved management of the nation’s water resources.   
 
Seven watersheds within the Chesapeake Bay drainage basin with different topographic and 
land cover/land use characteristics had been selected for this project.  Each study watershed 
was chosen to represent specific topographic and land cover/land use characteristics.  Taken 
in total, the sample of watersheds provided a wide range of soils, geology, land cover/land 
use and topography. 

The most important conclusion from this study is that the NASA developed data assimilation 
precipitation products will result in improved model performance.  Attempts to use data 
assimilation ET products did not show a measurable improvement in model performance.  
The recommendation culminating from this study is that NASA and EPA work together to 
add the capability for using the data assimilation precipitation products to the EPA hand 
books of procedures.  This process has been initiated. Thus, any group interested in using 
BASINS to estimate TMDLs, would have an alternative method for estimating precipitation 
inputs.  This will be especially valuable for cases where the nearest weather station is some 
10s of kilometers outside of the watershed.  This should also expand the potential use of 
BASIINS to parts of the United States and the world where good meteorological data are 
lacking. 
 
An additional conclusion is for the EPA to evaluate the findings from the Wisconsin group to 
see how some of the forest disturbance metrics could be adapted into a parameterization 
scheme so that HSPF could respond to different forest species and the health of the forests. 



2.0 INTRODUCTION 

2.1 NASA, ESE, ESA and Application Mission Traceability 
 
The NASA vision and mission statements include a clear focus on the Earth and life on 
Earth.  NASA seeks to improve life on Earth by enabling people to use measurements of 
our home planet in valuable ways to manage our natural resources.  NASA’s Earth 
Science Division has primary responsibility for two Agency-wide, Earth oriented themes 
in the NASA strategic plan:  Earth system science and Earth science applications.  In 
serving these themes, the Division works with its domestic and international partners to 
provide accurate, objective scientific data and analysis to advance our understanding of 
Earth system processes and to help policy makers and citizens achieve economic growth 
and effective, responsible stewardship of Earth’s resources. 
 
The Earth Science Applications Program has as its primary goal to extend the benefits of 
NASA’s Earth science to the broader community.  To do this, NASA has identified 
twelve applications of national priority of which water resources is one.  The Water 
Resources Program Element extends products derived from Earth science information, 
models, technology and other capabilities into partners’ decision support tools to help 
them meet their water management responsibilities and mandates to support water 
resource managers.  The general areas related to water availability and quality include: 
 

• Estimating water storage – snowpack, soil moisture, aquifer volumes 
• Modeling and predicting water fluxes - evapotranspiration, rain, runoff  
• Water quality – turbidity, temperature, modeling nonpoint source pollution 

 
It is in response to this last item, nonpoint source pollution, that NASA is partnering with 
the Environmental Protection Agency (EPA) to investigate the feasibility of using NASA 
data and data products to improve EPA’s capability to model watershed nonpoint source 
pollution.  The EPA is responsible for protecting various bodies of water in the U.S..  The 
primary guideline for EPA’s mandate is the Clean Water Act of 1972 (Federal Water 
Pollution Control Act, 1972).  One of the regulations spelled out in this Act is that EPA 
must track the Total Maximum Daily load (TMDL) for any watershed.  In short, the 
TMDL defines the amount of pollution that can be carried by water before it is 
determined to be “polluted”.  There are essentially two ways for EPA to do this: one is 
through in-stream measurements and sampling, and two, through modeling the streams 
response to storm runoff and pollution loadings.  The first option would be prohibitively 
expensive and impractical for the entire U.S..  The modeling approach is the only 
practical solution.  To do this, EPA developed the BASINS (Better Assessment Science 
Integrating Point and Nonpoint Sources) (USEPA, 2001) decision support tool. 
 
The problem of nonpoint source pollution is a spatially and temporally complex issue.  
To overcome these shortcomings, the EPA has developed a suit of models to simulate 
streamflow and nonpoint pollution loadings.  The models in BASINS currently rely on 
point-based meteorological and pollution measurements. Our premise is that by   
incorporating NASA remote-sensing data, many of the critical input variables to BASINS 



can be improved spatially.  Satellite gridded data and data products might enhance 
BASINS output results, thereby leading to better decisions regarding water quality, 
leading to improved management of the nation’s water resources.  This goal 
complements the NASA Mission Statement “To understand and protect our home 
planet...” and NASA’s Vision “to improve life here...” 

2.2 The BASINS DST 
 
Ideally, one would like to monitor water quality at numerous locations within a watershed 
on a periodic basis to assess fluctuations in water quality under different flow and 
seasonal conditions and assist in the identification of pollution sources.  Unfortunately, 
all states lack the resources to assess and protect water bodies with monitoring data alone.  
To overcome this shortcoming, the EPA has developed a modeling system for performing 
watershed and water quality studies. BASINS (USEPA, 2001) is a multipurpose 
environmental analysis system to assist regional, state and local agencies in their 
assessment obligations.  BASINS was developed to meet three objectives: 
 

1. To facilitate examination of environmental information 
2. To support analysis of environmental systems 
3. To provide a framework for examining management alternatives 

 
BASINS is configured to support environmental and ecological studies in a watershed 
context.  BASINS is also configured to develop TMDLs for water bodies that are not 
meeting water quality standards. Section 303(d) of the Clean Water Act requires states to 
develop TMDLs for water bodies that are not meeting applicable water quality standards.  
Developing TMDLs requires a watershed-based approach that integrates both point and 
nonpoint sources. 
 
BASINS includes a suite of models designed to model meteorological conditions, flow 
across watersheds, and ultimately pollutant transport.  The systems overview for BASINS 
is illustrated in Figure 1.  The results produced by the models enable more accurate 
understanding of conditions leading to excessive TMDL values.  BASINS includes 
hydrologic and pollutant fate and transport models that simulate streamflow and runoff 
from the land surface (nonpoint sources).   
 
 



 
 
Figure 1:  BASINS operational  overview. 
 
 
Accuracy in modeling streamflow and runoff is essential for estimating water quality and 
establishing TMDLs at locations within a watershed.  Quantitative measures or estimates 
of streamflow are needed to define concentrations of water quality constituents.  In order 
to simulate streamflow in a watershed, EPA has sponsored the development of a 
continuous hydrologic simulation model known as HSPF (Hydrologic Simulation 
Program – FORTRAN) (Donigian et al., 1995 and Bicknell et al., 1997).  HSPF simulates 
nonpoint source runoff and pollution loadings, combines these with point source 
contributions, and performs flow and water quality routings in the watershed channels. 
 
The Evaluation Report (NASA, 2007 ) defines the steps taken and the justification for 
choosing HSPF as the DST for this Benchmark study.  The key to the BASINS suite of 
models is the Hydrological Simulation Program - Fortran (HSPF), which calculates daily  
stream flow rates and the corresponding pollutant concentrations at the watershed outlet. 



HSPF does not perform well when adequate spatial input and watershed data are not readily 
available.  

2.3 Systems Engineering Approach 
 
The Earth Science Applications program’s approach to extend the benefits of Earth 
science observations and predictions to decision-support tools is based on fundamental 
system engineering principles.  Figure 2 illustrates the architecture underlying the 
activities of the Earth Science Applications program.  To the right, partner agencies own, 
develop and operate decision support tools to carry out their water management 
mandates.  On the left, NASA extends the observations, model predictions, and 
computational techniques from its Earth science research to support its partners. 
 
 

 
 
Figure 2. Illustration of the systems engineering architecture underlying the 
activities of the Earth Science Applications Program and its specific application to 
the EPA BASINS Decision Support Tool. 
 
 
The systems engineering approach involves the four steps of evaluation, validation, 
verification and benchmarking to test the utility of NASA Earth science data for 
improving the performance of EPA’s watershed and water quality decision support tools.  
The emphasis of this report is to evaluate the use of NASA data products through study 
of the EPA BASINS Decision Support Tool (DST).  The benefit to EPA would be the 
adaptation and inclusion of state-of-the-art Earth systems data and data products into 
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watershed assessment while a benefit for NASA benefit would stem from continuing its 
mission “to understand and protect our home planet.” 
 
The major emphasis is the use of NASA products to estimate important model parameters 
(e.g., land use, buffer zones, etc.), improve forcing functions (e.g., precipitation, 
evaporation, etc.) and provide initial conditions (e.g., soil moisture, snow cover, etc.) to 
improve the performance and accuracy of BASINS.  The evaluation step in this process 
was to assess BASINS inputs and outputs.  Next, NASA modeling and remote sensing 
products were matched against the existing inputs to BASINS.  
 
Following this initial evaluation, the most promising NASA data products were chosen to  
be substituted into BASINS one at a time to test for improvements in HSPF-simulated  
stream flow.  The process of ingesting NASA data to BASINS constituted the second 
step of the systems engineering approach. This Verification and Validation phase 
involved the development of techniques for using NASA data in BASINS.  Also, the 
baseline  data has been defined and benchmark metrics have been developed within this 
phase. 
 
The third and final phase in the systems engineering process, the benchmarking phase, 
included the results of testing each NASA input separately against the established 
baseline in phase 2.  Also, the benchmarking phase described the processes necessary to 
integrate results of this effort into everyday BASINS use at the EPA and partner level. 
 
An anticipated outcome of this project was the determination of optimal data sets for use 
with watershed assessment tools. A key part of the benchmarking procedure is 
comparisons of results using EPA traditional data and configurations versus those with 
NASA data and to document the improvements with quantitative measures against the 
baseline results. 

2.4 Purpose of Report 
 
The purpose of this report is to document the entire process of the investigation.  This is 
simply keeping with good practice.  However, more importantly, this report is intended to 
provide comprehensive results for the partnering agency, EPA.  The report provides 
details of the study process and the results in quantifying metrics so as to enable EPA to 
make decisions on whether or not to implement improvements to their BASINS system. 
 
3.0    SUMMARY OF SYSTEMS ENGINEERING ACTIVITIES 

3.1 DST Evaluation 
 
The BASINS system combines six components to provide the range of tools needed for 
performing watershed and water quality analysis.  These interrelated components can be 
summarized as follows: 
 



1. National environmental data bases (basic cartographic data, environmental 
background and monitoring data, point sources/loading data) 

2. Assessment tools (TARGET {broad based, preliminary conclusions}, 
ASSESS {status of specific stream reaches and evaluate the need for source 
characterization and cause-effect relationships} and Data Mining) 

3. Utilities ( a series of tools for managing data, delineating sub-watersheds, 
reclassification of data and overlaying data) 

4. Watershed characterization reports (point sources, land use, topography, etc.) 
5. Water quality stream models (QUAL2E) 
6. Watershed models (HSPF, SWAT, PLOAD) 

 
The decision was made to evaluate the EPA models (5&6 above) to select the optimal 
opportunities for infusing NASA data and data products with the hope of improving the 
usefulness and performance of the EPA BASINS system. 
 
QUAL2E is a one dimensional model that analyzes the fate and transport of pollutants 
selected stream reaches. QUAL2E is best used where you are concerned with a Dissolved 
Oxygen (DO) endpoint in an effluent dominated system and can accept the steady state 
assumptions.  The details and scale of this model eliminated it from further consideration 
for NASA contributions.  Our focus then concentrated on the three watershed models. 
 
In considering what strengths a potential NASA contribution could make to improving 
the application of BASINS to different physiographic regions, we focused on the spatial 
and temporal characteristics of remote sensing data and data products.  EPA considered a 
continuous simulation model to be critical for a realistic representation of watershed 
processes.  A continuation simulation model automatically takes into consideration the 
serial correlation present in flows and other variables, as well as the cross-correlations 
between measured variables.  Based on this criterion, we eliminated PLOAD and SWAT 
from consideration.  PLOAD is a simple watershed model that is based on annual 
precipitation, land use and Best Management Practices (BMP).  PLOAD can be used 
when you want estimates of annual and seasonal loading to drive simple eutrophication 
models.  SWAT is a daily time step model that can predict the effects of land use 
management and can be used where there are no nearby meteorological stations with 
hourly data and where there is no nearby gauged watershed. 
 
The process of elimination and the matching of NASA capabilities and BASINS needs 
has led us to focus on the Hydrologic Simulation Program – FORTRAN (HSPF) 
Donigian et al., 1995 and Bicknell et al., 1997) model.  HSPF simulates the hydrology 
and associated water quality processes on pervious and impervious land surfaces and in 
streams and well mixed impoundments.  HSPF is a lumped parameter, continuous 
streamflow simulation model based on the Stanford Watershed Model (SWM), the first 
real watershed model performed on a digital computer.  The model requires land use, 
channel reach, and meteorological data and information on expected pollutants.  HSPF is 
designed to interact with BASINS utilities and data sets to facilitate the extraction of 
appropriate information and the preparation of model input files.  HSPF can be run on a 
single watershed or a system of multiply connected sub-watersheds that have been 



delineated using the BASINS “Watershed Delineation” tool and GIS elevation datasets 
such as the Digital Elevation Model (DEM) provided by USGS.  Generally, spatial 
variability within a large watershed is dealt with by subdividing the watershed into sub-
watersheds.  In doing this one then must select parameters for each sub-watershed to 
reflect the spatial heterogeneity. 

3.2 Implementation 
 
In choosing to work with HSPF, we realized that the NASA impact could be derived 
from all three potential areas in which NASA data and science products may be used to 
improve the BASINS model performance.  These include: 
 

• Improved input data sets (i.e., land use, buffer zones, from satellite imagery, etc.) 
• Improved forcing (i.e., spatially distributed precipitation, evaporation, wind, solar 

radiation, etc. derived from data assimilation) 
• Improved initial conditions (i.e., snow cover, soil moisture, from data assimilation 

products, etc.) 
 
Improved input datasets can take the form of GIS datasets currently available to 
BASINS from many sources, including the National Elevation Dataset (Gesch et al., 
2002), the National Land Cover Dataset (Vogelman et al., 2001), and the STATSGO 
soils database (USDA, 1993).  However, numerous alternative data sets exist, including 
digital elevation data from the Shuttle Radar Topography Mission (SRTM, e.g., Smith 
and Sandwell, 2003), soil properties maps (e.g., Hargrove and Luxmoore, 1998), 
ecoregion delineations (Hargrove and Hoffman, 2004), as well as detailed land use and 
land cover maps with more hydrologically meaningful categories, such as impervious 
surface area (e.g., Civco et al., 2002; Wang and Zhang, 2004; and Jantz et al., 2004) or 
MODIS-derived measures of vegetation cover and phenology (Hansen et al., 2002; 
Zhang et al., 2003; and Ni-Meister and Tomita, 2005). 
 
Many of these data sets – especially those related to land cover – are expected to provide 
more accurate representations of the surface properties within watersheds.  Specifically, 
the dynamic characterization of land cover through time will be an improvement over 
static classifications.  Likewise, the assessment of total imperviousness within a 
watershed (where every pixel exhibits a range of imperviousness) will be more useful 
than the simple quantification of pixel area mapped as an impervious class (e.g., “urban 
or built-up” in the Anderson Level II scheme (Anderson et al., 1976).   
 
The introduction of improved parameterization for land cover/land use (lc/lu) was to be 
performed by the Wisconsin group.  The goal was to see if up to date and seasonal 
measures of lc/lu would provide more realistic characterization of the actual watershed 
conditions than using a static lc/lu measure dating to 1991. 
 
Improved forcings for HSPF will focus on improving the accuracy of meteorological data 
at appropriate temporal and spatial resolutions to ensure the quality of the modeling 
results.  Typically hourly station data maintained by NOAA or other organizations is used 



in HSPF modeling.  However, there are many instances in which there are no nearby 
meteorological data available from ground-based stations for a watershed of interest.  In 
such instances, estimates are usually made by using data from the closest stations.  
Meteorological data plays a crucial role in simulating stream flow and runoff, which in 
turn have a significant impact in estimating total pollutant loads and developing TMDLs.  
Having accurate hourly meteorological data on a relatively small spatial scale could 
improve HSPF modeling efforts by decreasing modeling uncertainty, increasing the 
accuracy of TMDL estimates, and allowing for modeling on smaller scales.  More local 
scale modeling could lead to more efficient placement of Best Management Practices 
(BMPs) used to control nonpoint source pollution, thereby providing better water quality 
results at lower costs.   
 
Both the Hunter and GSFC groups worked on evaluating the impact of improved 
forcings.  The goal here was to evaluate the impact of LDAS and LIS developed 
precipitation and ET inputs of HSPF performance.  Hunter attempted to use both 
precipitation and ET as improved inputs to the model while the GSFC group 
concentrated on precipitation alone. 
 
Improved initial conditions involve quantifying the hydrologic status of the watershed at 
the beginning of the simulation run.  Typically these would include variables such as soil 
moisture, snowpack volume and water content and impoundment levels.  Soil moisture is 
a product derived from data assimilation and in the future from direct satellite 
measurements.  However, it cannot be used to improve HSPF because the soil moisture 
related parameters in HSPF are simply parameters and are not based on actual levels of 
soil moisture.  However, snow products from data assimilation and satellites have the 
potential for significant improvements in simulating runoff from snowmelt or rain on 
snow events. 
 
Given the fact that HSPF is a lumped model that is highly parameterized, there is no 
direct relationship between model parameters and actual measurements in the field.  
For example, Upper Zone Soil Moisture, in HSPF, is a model fitting parameter and not 
a physical state variable.  Because of this we saw no way to use NASA model or 
measurement derived data to improve model performance. 

3.3 DST Verification and Validation 
 
Seven watersheds within the Chesapeake Bay drainage basin with different topographic 
and land cover/land use characteristics have been selected for this project.  Figure 3 
shows the location of the study watersheds within the greater Chesapeake drainage basin.  
Our general approach was to Verify our results on one watershed and to work out the 
procedures for inputing the NASA data and data products with this chosen watershed.  
These procedures were then used to analyze the impacts of NASA inputs for all of the 
watersheds.  The Verification watershed is the Patuxent watershed between Washington 
and Baltimore.  This is an area that has experienced typical nonpoint source pollution 
problems, including runoff from agricultural lands, conversion of agricultural and 
forested areas to urban and suburban use, and runoff from impervious areas.  EPA has 



already set up the HSPF and BASINS modeling systems for use in this area.  The 
verification step involved comparisons of the HSPF model output with the measured flow 
and this also established the baseline for the future benchmarking.  The comparisons 
involved graphical plots of annual and storm hydrographs and statistical measures of the 
differences between the model produced and measured streamflow.   
 
The output from this system has been compared to measured stream flow and water 
quality parameter concentrations at various points in the watershed and the results are not 
particularly good.  Our plan was to incrementally force the HSPF model with improved 
input data from the LIS to see if we can improve the fit between measured and model 
derived results.  We also planned to do similar experiments with improved parameters 
and improved initial conditions.  After seeing which forcings, parameters and initial 
conditions improve the HSPF/BASINS results we planned to experiment with 
combinations of these. 
 
We  then validated our procedures by running similar experiments on the other chosen 
watersheds within the Chesapeake Bay watershed.  The final verification and validation 
step was making the enhanced version of HSPF available for demonstration using 
operational NASA data and data products.  The last step is the benchmarking and 
documentation of the performance of the enhanced DSS (in this case, HSPF) by assessing 
its performance and comparing results with the baseline. 
 
4.0 BENCHMARKING 

4.1 Overview of Operational Environment  
 
The EPA’s Office of Water and NASA’s Earth Science Enterprise (ESE) entered into a 
Memorandum of Understanding (MOU) in 2003 to study the use of NASA remote 
sensing and modeling information to support EPA’s water-related programs.  Within this 
framework, NASA/GSFC and EPA developed a project plan (NASA, 2004) under NASA 
Water Management to study the use of NASA data to improve EPA’s water quality 
program.  The unique capabilities provided by NASA satellite remote sensing and 
modeling have significant potential to address critical deficiencies for EPA modeling of 
spatially and temporally variable nonpoint source pollution.  This project attempts to 
leverage the large investment in ESE data to a federal agency with national applications 
that may provide a significant return for policy making on water quality affecting 
people’s every day lives.  A recent Gallup News Service Poll (Saad, 2002) reported the 
top three out of ten environmental concerns of Americans involve water quality. 
 
This project is based on needs documented in the Memorandum of Understanding 
between NASA and The Environmental Protection Agency for Cooperation in Water, 
Coastal and Earth Sciences.  In this document, NASA agrees to: 
 

1. Support EPA science and technology research, development, transfer, 
utilization, and commercial efforts within the Research, Economics and 
Education Mission Area as agreed upon by providing technical expertise 



for performance, planning, review, or consultation in areas of mutual 
interest, subject to program priorities and budget constraints. 

2. Assist EPA through collaborations to evaluate, verify, validate, and 
benchmark practical uses of NASA-sponsored observations from remote 
sensing systems and predictions from scientific research and modeling 
through the NASA Earth Sciences Enterprise (ESE). 

 
NASA and EPA have identified ten areas of shared goals for improving decision making, 
policy, and management through beneficial and appropriate use of Earth science data and 
modeling.  Of these ten areas, at least eight are natural extensions of ongoing research 
and capabilities within the Hydrological Sciences Branch at GSFC.  Further 
collaborations for this project are currently being developed with groups at SSC and 
several universities that have demonstrated expertise in one or more of these areas. 
The combined NASA and EPA teams have identified the highest priority area for 
possible improvement through the use of NASA Earth science technology as being 
related to nonpoint source pollution.  Details of this collaboration are in the NASA 
approved project plan, “Water Management Plan: Nonpoint Source Pollution, 2004” 
(http://aiwg.gsfc.nasa.gov/esappdocs/progplans/water_ver1-1.pdf). 
 
As a result of the MOU between NASA HQ, NASA/GSFC along with the EPA Office of 
Water prepared a five year project plan (NASA, 2004), “BASINS: Nonpoint Source 
Water Quality” including work with the University of Maryland Center for 
Environmental Studies and Hunter College that was approved by NASA HQ.  
NASA/GSFC received funding in 2004 to work with the EPA to further develop 
relationships and start work.  Thus far, the time invested by NASA/GSFC with the EPA 
has been on study site selections, training, model calibration, and preliminary evaluation 
studies described in this document. 
 
Hunter College, CUNY. (PI, Wenge Ni- Meister) Dr. Ni-Meister has significant Land 
Data Assimilation System (LDAS), data assimilation, and remote sensing expertise to 
study effects of NASA MODIS and LDAS products on BASINS.  This coupled with their 
strong department work on GIS should enable a thorough analysis of test watersheds 
using LDAS and satellite data such as from MODIS.  Shihyan Lee has run the HSPF 
model and used PEST for calibration. 
 
University of Wisconsin, Madison.  (PI, Phil Townsend)  Dr Townsend has been a 
leader in research on watershed water quality and use of remote sensing data to establish 
relationships to land cover/land use.  Brenden?? 
 
Chesapeake Bay Program, Annapolis Maryland, Gary Shenk (Chesapeake Bay Program 
(CBP) Office) and Angelica L. Gutiérrez-Magness (UMCP/USGS).  EPA and CBP will 
help coordinate the selection of test sites and watersheds.  They will coordinate and 
provide assistance with setting up HSPF and performing calibrations.  Shenk and 
Gutiérrez-Magness will provide the CBP phase 5 version of HSPF code and sample 
datasets for the applications team.  They will work closely with the team in all phases and 
will participate in informal meetings and quarterly reporting periods.  

http://aiwg.gsfc.nasa.gov/esappdocs/progplans/water_ver1-1.pdf


 
NASA/GSFC – David Toll (NASA/GSFC) is the Team Leader with assistance from 
Edwin Engman.  GSFC is responsible for coordination of activities between groups.  
GSFC is also the lead group evaluating NASA LIS precipitation in to BASINS.  Joe 
Nigro provides GIS expertise and conducts the BASINS-HSPF runs. 

4.2 Benchmarking Activities 
 
Planning and Design:   The general approach used in this study was to establish a 
baseline condition in which HSPF was run to mimic as closely as possible what EPA or a 
contractor would do to estimate TMDLs for a watershed.  The project selected two 
precipitation products and an evapotranspiration product as the NASA inputs to evaluate 
whether or not these inputs could improve the performance of the HSPF for the selected 
watersheds.  Each of these were used to replace the nearest station values used in the 
baseline model runs.  Improvements, if any, were indicated by an improvement by the 
suite of statistical measures used in BASINS. 
 
Study Watershed Selection:   Seven watersheds within the Chesapeake Bay drainage 
basin with different topographic and land cover/land use characteristics have been 
selected for this project.  Figure 3 shows the location of the study watersheds within the 
greater Chesapeake drainage basin. Figures 4 illustrate the land cover/land use for each 
study basin and list the areas, elevations ranges and details of the nearest weather station. 
 
 

                                
 

      Figure 3.  Location of study watersheds within the Chesapeake Bay basin. 
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      Figure 4.  Physical characteristics of watersheds chosen for the study. 
 



Each study watershed was chosen to represent specific topographic and land cover/land 
use characteristics.  Taken in total, the sample of watersheds provided a wide range of 
land cover/land use and topographic variety. 
 
Methods and Metrics:   The first step in our study was to establish default model runs 
for each of the selected watersheds.  The default runs were conducted so as to mirror 
what the EPA or a contractor would do if they were establishing TMDLs for a selected 
watershed.  In the GSFC case, this involved using the Chesapeake Bay Program 
calibration values and using meteorological data from the nearest weather station.  The 
default model runs established the baseline against which future model runs using NASA 
data inputs would be compared to see if any improvement in model performance was 
achieved.  In the Hunter case, a similar strategy was followed except that the calibration 
values were derived from an automatic parameter estimation technique. 
Our general approach was to Verify our results on each watershed and to work out the 
procedures for inputting the NASA data and data products with each chosen watershed.  
These procedures were then be used to analyze the impacts of NASA inputs to all of the 
watersheds.  The first Verification watershed is the Patuxent watershed between 
Washington and Baltimore.    This is an area that is experiencing typical nonpoint source 
pollution problems, including runoff from agricultural lands, conversion of agricultural 
and forested areas to urban and suburban use, and runoff from impervious areas.  EPA 
has already set up the HSPF and BASINS modeling systems for use in this area.  The 
verification step involved comparisons of the HSPF model output with the measured 
flow and this established the baseline benchmark.  The comparisons involved graphical 
plots of annual and storm hydrographs and statistical measures of the differences between 
the model produced and measured streamflow.   The verification results are shown as the 
default data in the following results tables. 
 
The procedures were then validated by running similar experiments on the other chosen 
watersheds within the Chesapeake Bay watershed.  The final verification and validation 
step made the enhanced version of HSPF available for demonstration using operational 
NASA data and data products.  The last step was the benchmarking and documentation 
of the performance of the enhanced DSS (in this case, HSPF) by assessing its 
performance and comparing results with the baseline. 
The BASINS system includes several statistics for evaluating how well the model runs 
compare to the measured data.  These include a correlation coefficient, a coefficient of 
determination, a percent mean error, a mean absolute error, a RMS error, the Nash-
Sutcliff model fit efficiency, and the Nash-Sutcliffe absolute difference.  Our 
benchmarking concentrated on the correlation coefficient and the Nash-Sutcliff 
statistic.  

4.3 Preparatory Activities 
 
Calibration Strategies:   The project used two different approaches to deal with the 
selection of HSPF calibration values.   HSPF a conceptual model and its parameters often 
do not have simple relationships with field measurements. Calibration in HSPF is a must 
step. Although studies have shown that HSPF often yield superior results over other 



hydrologic models (Johnson et al., 2003, Nasr et al., 2007), adequate calibrations have 
been the key for HSPF accurate model predictions. The calibration process in HSPF 
commonly involves subjective parameter fitting, which is time consuming, not 
reproducible, requires expert knowledge of the region’s meteorology and hydrology 
properties as well as experience using HSPF. However, in some cases calibration values 
are established for a watershed or a region such as the Chesapeake Bay Watershed for use 
without subjective parameter fitting. 
 
In this study, the calibration strategy is adopted from HSPF calibration guide line 
published by the EPA (US EPA 2000). Parameters representing the watershed’s 
geographical properties, (e.g. slope) are not calibrated, instead values derived through the 
application of GIS methodologies were used for running the model . Parameters 
representing hydrologic process related parameters on pervious surfaces including LZSN, 
INFILT, AGWETP, CEPSC, UZSN, INTFW, IRC, NSUR and LZETP are potential 
parameters for calibration. Additional non-pervious land segment parameters, NSUR, 
RETSC, were calibrated for NE Anacostia because of its large urban area. Parameters 
related with interaction with deep aquifer, (BASETP, DEEPFR) were set to zero since 
this activity is unlikely in this region, and he detail domains used for each calibration 
parameter are listed in table 3. this setting is consistent with Chesapeake Bay Program's 
(CBP) calibration parameters.  
 
Table 3. HSPF calibration parameters and their domains 
 
Parameter Unit Range Parameter Unit Range
LZSN inch 3.5 - 15 UZSN inch 0.2 - 2
INFILT inch 0.03 - 0.3 NSUR inch 0.1 - 0.5
AGWRC 1/day 0.9 - 0.99 INTFW inch 1.5 - 6
AGWETP 1/day 0 - 0.15 IRC inch 0.3 - 0.85
CEPSC 0 - 0.25 LZETP 0.3 - 0.9  
 

1.  GSFC Approach   The baseline or default runs were implemented in two different 
ways that match as closely as possible the procedures that EPA would use for 
establishing TMDLs for these seven watersheds.  In the first case GSFC used HSPF 
calibration values established for the watersheds within the Chesapeake Bay watershed.  
The Chesapeake Bay Program had established calibration values based on average county 
soils, topography and land use for each county in the basin.  Figure 5 illustrates the 
location of the study watersheds and the counties chosen for the calibration values. 
Watersheds that covered more than one county used the averages of the pertinent county 
values.  No attempt was made to improve the hydrograph fitting through manual 
calibration.  Our thinking was that the CBP parameters were quite good and that any 
improvement (if any) through use of the NASA forcing data would be evident without 
further calibration. 



                
 
      Figure 5.  Counties used to establish the baseline calibration for HSPF. 
 
 
2.  HUNTER Approach   This approach used an automatic procedure for estimating the 
calibration values.  This method known as  PEST (Doherty, 2001) provided an alternative 
way of calibration by calculating the model errors gradient from the current parameter 
values’ differential. The model errors are calculated by a set of objective functions which 
are based on the principle of the weighted least-squares (Carroll and Ruppert, 1988), with 
different weights assigned for each objective function.  To find the global minimum for 
the objective functions (model errors), an iterative process based on the nonlinear 
estimation technique known as the Gauss-Marquardt-Levenberg (Levenberg, 1944) and 
(Marquardt, 1963) method was applied to adjust parameters within preset ranges. The 
Gauss-Marquardt-Levenberg technique is based on the linearization of the relation 
between model parameters and model predictions at the beginning of all iterations. This 
process can be automatic therefore the results can be reproduced. In this study, the latest 
version of PEST (version 11, Doherty 2004) was used as the tool for automatic 
calibration.  
 
The uneven flow volume distribution results In the  model calibration not being a straight 
forward process. It is common for the flow in the studied area having 1-2 order higher in 
magnitude than base flow; however, its duration is much shorter than low flow. The peak 
flows will likely dominating the calibration process if commonly used single root-mean-
squared-error (RMSE) method is used.  To remediate the peak flow domination, an 
inverse weight by flow volume can be applied to set the equal weight on daily flow 
errors. This type of objective function will likely produce the best fit (correlation 
coefficient); however it could be far worse in predicting peak flows and maintaining 
overall water balance. This is because the dominating factors had a shift from peak flow 
to lower flow days because their overwhelming numbers.  To better capture hydrologic 
characteristics, three objective functions, naming mFlow, mVol and mTime, were used. 
A fourth objective function (mET) was added for HSPF runs involving NASA ET. Each 
objective function was designed to target specific flow characteristics. 
 



mFlow is calculated as the error between daily observed and simulated flow with a 
weight as the inverse of observed flow to normalize the error among high and low flow 
days. Since storm events are short, the purpose of this component is to focus on 
calibrating base or low flow. MVol is calculated as the error between monthly observed 
and simulated flow, with a weight set as the inverse of square root of observed flow. This 
component is set to balance the monthly water budget which also impacts overall water 
balance. MTime is calculated as the error between the percentages in flow duration 
(percent flow days in certain flow volume range). This component is often associated 
with peak and overall flow volume. In this study, it is calculated at 5% flow duration 
interval. mET is calculated as the error between NASA ET and HSPF simulated actual 
ET (SAET). This component is used for model runs involving NASA ET, which served a 
mean to match HSPF SAET to NASA ET and have nothing to do with stream flow. More 
detail on the purpose of mET will be discussed later. 
 
An important part of automatic calibration is choosing the initial condition and selecting 
a reasonable  domain for each calibrating parameter. The CBP calibrated the HSPF model 
in many of its watersheds, and maintain a HSPF parameter dataset at county level, which 
is slightly larger then our basins. Therefore, we estimated the initial condition for each 
watershed from the closest CBP calibration parameters in that area. The values of 
parameters during the calibration were constrained by the highest and lowest possible 
values that can be found in the whole CBP calibration parameters set, which means the 
parameters are in the reasonable range for the region's climate and hydrologic properties.  
 

As stated earlier, three objective functions (four for NASA ET runs) are used during the 
calibration; each is calculated differently and with its own purpose. The ultimate goal was 
to make each components contribute approximately equally at the end of calibration. The 
reason for doing this is to get the best general fit since this study did not aim at any 
specific application. Besides the weights associated with each member within the same 
objective function, a second weight function was applied to each function to adjust the 
relative importance among them. The group weight function was then adjusted iteratively 
until equal contribution from each objective function was achieved. 
 
Subdividing Watersheds:   Each selected watershed had to be subdivided into 
subwatersheds that approximated the grid square for input (precipitation or ET) of the 
grid based NASA data. Within BASINS the process of  watershed subdivision is known 
as segmentation.  Segmentation allows the modeler to develop sub-areas of the 
watershed with uniform parameters and meteorological inputs that are connected by a 
reach network.   This step was done by overlaying the watershed with the LDAS or LIS 
grid, and identifying a point on the boundary of the grid where an outflowing stream 
crossed it.  The BASINS Automatic Watershed Delineation tool was then used to set up 
the HSPF to accept the gridded NASA input data.  Figure 6 illustrates this process for the 
NLDAS 1/8 degree data and the Stage IV 4 km data. 
 



 
 
     Figure 6.  Illustration of how the gridded LDAS and Stage IV data overlaid the     
     watersheds and outlets (red points) were assigned based on the interaction of    
     stream and grid boundary. 
 
 
Data Collection   The watersheds chosen all had continuous stream flow measurements 
for the period of 2001 to 2004.  This period was selected to match the LDAS and LIS 
records that were readily available for abstracting the NASA data contributions.   
 
LDAS (Land Data Assimilation System) ingests satellite- and ground-based 
observational products as data for parameterizing, forcing, constraining, and evaluating a 
suite of sophisticated land surface models (LSMs), in order to generate optimal fields of 
land surface states (e.g., soil moisture, snow water storage, soil temperature) and fluxes 
(e.g., evapotranspiration, runoff, sensible heat flux) (Rodell et al., 2004a).  The software, 
which has been streamlined and parallelized by the Land Information System (LIS) sister 
project (Kumar et al., 2005), drives multiple, offline (not coupled to the atmosphere) land 
surface models, executes globally at high resolutions (2.5° to 1 km), and is capable of 
producing results in near-real time.   
 
Forcing Data   Three forcings developed from the NASA data assimilation products 
were used.  Each is described briefly as follows: 
 

1. LDAS 1/8 degree precipitation:   Hourly observation based precipitation data 
were derived from a combination of daily National Center for Environmental 
Prediction Climate Prediction Center (CPC) gauged-based precipitation analyses 
and hourly National Weather Service Doppler radar-based (WSR-88D) 



precipitation analyses, where in the hourly radar-based analyses are used to 
temporally disaggregate the daily CPC values. 

2. Stage IV 4 km precipitation:  The hourly 4km precipitation values have been 
derived by the NOAA River Forecast Center Multisensor Precipitation Estimator 
(MPE).  This product is generated at NCEP directly from radar and gauged data.  
These data are preliminary estimates of what one can expect in the future LIS 
precipitation products that would include TRMM and other satellite inputs. 

3. NOAH ET values:  The community NOAH Land Surface Model (LSM) is a stand 
alone, 1-Dimensional model which can be executed either coupled or uncoupled 
modes.  NOAH uses a linearized, non-iterative surface energy budget, the Jarvis-
Steward “big-leaf” canopy conductance for different land-use classes, and treats 
multiple soil layers through soil moisture diffusion and soil heat transfer for 
different soil textures (Chen et al, 1996, Ek et al, 2003). 

 
Goodness of fit statistics were produced for four different scenarios:  1.  The annual 
hydrograph,  2.  An extended period of low flow (little or no precipitation),  3.  A period 
of high flows that included several storms, and 4.  A short period around individual 
summer (presumably convective storms). 
 
Analysis and Findings – Improved Forcing - Precipitation   The GSFC results for 
each scenario are presented in Appendices I – III.  Three different flow conditions were 
analyzed for each study basin.  First, the annual hydrographs were calculated for each 
year using the default and improved forcings.  Subsequently, some low flow periods 
were subjectively selected and several summer storms were also selected for each 
watershed.   In these tables, the default statistics represent use of the nearest weather 
station data.  The NLDAS 1/8th statistics represent the results from the NASA derived 
precipitation data but for a subdivided watershed to correspond to the 1/8th degree grid.  
The Stage IV statistics represent the results from using the Stage IV rainfall data but for a 
subdivided watershed corresponding to a 4 km grid.  In the GSFC results the same 
calibration values used for the default runs were used for the NLDAS and Stage IV runs.   
The best performing statistics are highlighted with a red box.  It can be seen that in 
almost every event and almost every scenario that either the NLDAS or the Stage IV 
precipitation dramatically improved HSPF model performance.  In most cases there is 
little to choose between the NLDAS and Stage IV precipitation results.  Both improved 
HSPF performance but neither one was consistently better then the other. 
 
Analysis and Findings – Improved Forcing – Evapotranspiration   The Hunter results 
where LDAS modeled ET was substituted for the HSPF derived ET values are shown in 
Appendices IV-VI.  These results show very little, if any, improvement in the overall 
statistics when using the LDAS modeled ET in place of the HSPF derived ET.  In a 
number of cases use of the LDAS ET actually resulted in worse statistics than with the 
default run.  In the case of the Hunter results, the model was calibrated using PEST for 
the default runs and the NLDAS and Stage IV runs.  Thus the model was recalibrated for 
each run.  The Hunter and GSFC results were very similar for the improved precipitation 
forcings from LDAS and Stage IV data.  This was true for the GSFC approach that held 



the calibration parameters constant and for the Hunter approach that recalibrated each run 
with PEST. 
 
Analysis and Findings – Improved Parameterization – Land Cover   Attempts to 
update land cover parameters with annual and seasonal land cover delineations were not 
successful.  The research leading up to this strategy illustrated a strong relationship 
between land cover changes and nitrate in the streams.  Unfortunately, BASINS version 
3.0 has only three land cover classes and there was no basis for changing the forest land 
cover parameterization short of outright guessing.  Within the forest cover classification 
there is no way to differentiate among species, leaf-on, leaf-off conditions or cases of 
partial defoliation due to disease or drought.   Thus there was no defensible strategy for 
infusing the NASA improved land cover information into the BASINS version 3.0 HSPF. 
 
Fortunately, the Wisconsin group has performed some very interesting research on the 
effects of land cover changes on water quality.  These results have potentially major 
impacts on how Version 4.0 of BASINS might be used to examine changes in water 
quality associated with seasonal as well as long term land cover/land use changes.  These 
results are summarized in section 5.0. 
 
Lessons Learned    In retrospect, one would have to conclude that use of the HSPF 
watershed model limited our ability to really test the potential of NASA data and data 
products for improving model performance.  The lumped nature of HSPF and its reliance 
on fitting calibration parameters are its principal weaknesses.   
 
The lumped nature of HSPF is inherently incompatible with NASA data which are grid 
based and spatially distributed.  For example, this eliminated the possibility of trying to 
use improved satellite derived landuse/land cover data to spatially represent the true 
conditions within the watershed.  HSPF, being a lumped model means that within the 
watershed or subwatershed the model parameters are uniform and unable to represent 
normal spatial heterogeneity. 
 
Although many of the model parameters would appear to have a physical significance 
(Upper Zone Storage – UZSN, INFILT, etc.. ) they are, in reality, simple fitting 
parameters.  The advantage of a model with many fitting parameters is that if one has 
good streamflow and meteorological data, one can eventually produce a very good fit to 
the measured data.  The disadvantage is that since these parameters do not represent real 
hydrologic states or variables, one has no capability to see if substituting real states (i.e., 
soil moisture) or variables (i.e., ET) would improve model performance.   
 
This being said, the major lesson learned is that use of NASA derived precipitation data 
does improve model performance in a significant way.  This should not be surprising; 
after all, precipitation is the major driver of the rainfall-runoff process and a more 
accurate estimate will result in improved simulation results, even for a lumped model.  
The important result from this study is that EPA now has an alternative for developing 
the precipitation data other then from the nearest meteorological station, which may be 
many kilometers away. 



5.0  EFFECTS OF SEASONAL LAND COVER CHANGES  
                             ON WATER QUALITY  
 
Forest disturbances such as the conversion of land to agriculture or pasture, logging, or 
defoliation by the gypsy moth larvae (Lymantria dispar) can lead to significant and 
consequential increases in the concentration of nitrogen (N) in receiving streams and 
downstream estuaries (Likens et al. 1970, Swank et al. 1981, Eshleman et al. 1998, 
Williams et al. 2005).  Satellite-based remote sensing has proven to be an effective tool 
for monitoring such disturbances and predicting their effects on the loading of N to 
streams (Townsend et al. 2004, McNeil et al. 2007).  In order to guide future integration 
of such remote sensing measurements into the BASINS/HSPF modeling framework, we 
conducted a benchmarking study comparing the abilities of several widely-used remote 
sensing metrics of land cover and forest disturbance for predicting the concentration of N 
in streams draining mixed land cover watersheds undergoing varying degrees of forest 
disturbance.   
 
We studied two different forest disturbance events (primarily logging and gypsy moth 
defoliation) that occurred in central Appalachian headwater catchments of the Potomac 
River.  The watersheds within these catchments are on average 85% forested, but the 
percentage of cleared lands (pasture, agriculture, low-density residential) ranges from 0.1 
to 69 percent.  The first forest disturbance event occurred in the summers of 2000 and 
2001 within the Fifteenmile Creek (FMC) catchment, and the second occurred in the 
summer of 2006 within the Savage River (SR) catchment.  During baseflow conditions in 
the spring following each disturbance event (April 2001 and 2002 in FMC, May 2007 in 
SR), we conducted a survey of stream water nitrate (NO3

-) concentrations in randomly 
selected watersheds within each catchment.  For each disturbance event, we evaluated the 
ability of different remote sensing metrics of land cover and disturbance (independent 
variables) to predict spatial variability in the stream water NO3

- measurements 
(dependent variable).   
 
We evaluated land cover metrics derived from the 2001 National Land Cover Dataset 
(Homer et al. 2007).  The categorical NLCD data are the standard inputs to BASINS and 
HSPF model analyses, and thus provided the baseline for our benchmarking study.  We 
reclassified the categorical NLCD data to obtain watershed average measures of (1) 
percent non-forest area, (2) a net nitrification index, (3) an N retention index, and (4) an 
N output index.  We calculated the latter three indices using land-cover specific HSPF 
calibrated parameters developed for till soils in the Ipswich River watershed of 
Massachusetts (Filoso et al. 2004).  We also calculated watershed averages of the two 
continuous NLCD metrics: percent canopy cover and percent impervious surface. 
 
We evaluated satellite-based remote sensing metrics derived from NASA’s Landsat and 
MODIS instruments.  These metrics characterized the spatial pattern of disturbance 
intensity using four different approaches: (1) single date, (2) inter-annual change 
detection using one “reference” year relative to the disturbance year, (3) phenologic 
change detection using pre- and post-disturbance images within a year, and (4) integrated 



annual phenology metrics. Availability of Landsat data enabled us to apply the single 
date approach, as well as the inter-annual change detection approach.  For both 
approaches we evaluated the NDVI, NDII, and Tasseled Cap Brightness, Greenness, and 
Wetness indices, as well as the “disturbance index” that summarizes the three tasseled 
cap indices (Healey et al. 2005).  We also evaluated a change vector approach that 
summarizes the magnitude and direction of inter-annual change in dimensions defined by 
the three tasseled cap indices (Townsend et al. 2004).  From the MODIS imagery, we 
used imagery from before the gypsy moth defoliation and during the defoliation to detect 
the within-year phenologic change caused by disturbance. We used three MODIS data 
sources: daily data, 8-day composite data, and the 16-day EVI product.  Finally, we also 
evaluated the integrated measures of annual phenology derived from MODIS data.  For 
comparison to the stream water nitrate data available for each watershed, we summarized 
the higher resolution Landsat data by calculating the average of all forested pixels in each 
watershed.  In order to retain the maximum number of pixels in the study watersheds, we 
did not mask out non-forest pixels in the analysis with the coarser-resolution MODIS 
data.       
 
Stream water nitrate concentrations ranged from 0.16 mg/L to 1.35 mg/L (mean = 0.53 
mg/L, 1σ = 0.27 mg/L) in the 40 watersheds of the May 2007 SR survey, and ranged 
from 0.002 mg/L to 0.93 mg/L (mean = 0.23 mg/L, 1σ = 0.21 mg/L) in the 31 watersheds 
of the April 2001 FMC surveys.  Our “baseline” benchmark data of the categorical 
NLCD land cover metrics showed a poor ability to predict spatial variability of nitrate 
concentrations in either catchment (Table 1). Similarly, the continuous NLCD 
measurements of percent impervious surfaces and percent canopy cover also showed 
poor predictive ability (Table 4).   Reclassifying the NLCD categorical data with the 
calibrated HSPF model parameters from Filoso et al. (2004) did not improve these results 
(Table 1).  While previous BASINS/HSPF modeling analyses have highlighted a strong 
relationship between land cover (particularly the percent non-forest area of a watershed) 
and spatial variability in nitrogen export (Williams et al. 2005), we suggest that the small 
percentages of non-forest land cover types in our study catchments emphasized the 
importance of forest disturbance processes, and precluded our ability to find direct 
relationships among land cover and watershed N export.    
 
The remote sensing metrics of forest disturbance strongly differed in their abilities to 
predict spatial variability in stream water nitrate concentrations (Table 1).  The integrated 
annual phenology metrics obtained from the MODIS for North American Carbon 
Program were the least successful group of metrics, as the spatial patterns in all tested 
metrics (i.e. green-up, brown down, large integral, small integral, and season length) had 
no significant relation to the spatial pattern of stream water N (Table 1).  The Landsat 
single-image metrics also showed a low predictive ability of stream water nitrate (Table 
1).  The addition of a reference image and use of a change detection approach 
dramatically increased the ability to use Landsat and MODIS remote sensing data to 
predict spatial patterns of stream water N loading. As we have found previously 
(Townsend et al. 2004, McNeil et al. 2007), the ability to detect increases in the nitrate 
concentration of stream waters was based on detecting disturbance-induced decreases in 
the greenness and wetness components of forest canopies.  In particular, the Δ NDII, a 



close correlate of canopy moisture content (Jackson et al. 2004), was generally stronger 
than Δ tasseled cap indices and Δ NDVI or Δ EVI.  This result was not surprising in light 
of the fact that greenness measures (e.g. NDVI) can saturate in dense canopies, and thus 
may lose precision in discriminating the effects of small amounts of forest disturbance.  
In contrast, canopy water content based metrics such as NDII scale linearly with total 
canopy mass, and thus can capture subtle disturbance-induced changes to the canopy.  
The strong linkage among canopy cover and stream water N loading was further 
indicated by our multiple regression analyses where a portion of the residuals about the 
relationship with Landsat Δ NDII could be explained by the NLCD measure of percent 
canopy cover.  These two canopy cover metrics combined to predict 58% of the spatial 
variability in nitrate concentrations within streams of the FMC catchment (Table 3).     
 
Collectively, we suggest that these results reinforce the idea that the loss of forest canopy 
structure and function, either through increased non-forest land cover fraction (Williams 
et al. 2005), logging (Likens et al. 1970), or subtle insect defoliation or drought events 
(Townsend et al. 2004, McNeil et al. 2007) is mechanistically linked to decreased 
watershed retention of N.  Accordingly, we suggest that modeling canopy cover in a 
continuous and dynamic fashion would greatly enhance the precision and accuracy of 
predictions obtained from the BASINS/HSPF model, especially in largely forested 
watersheds.  In particular, our results show promise for using the 2001 NLCD percent 
canopy cover land cover metric in tandem with repeat MODIS- or Landsat-based NDII 
measurements that can account for the important forest disturbance-induced effects on 
stream water N concentrations.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4.  Predictive abilities of remotely-sensed land cover (NLCD) and forest 
disturbance metrics for assessing spatial variation in spring baseflow nitrate 
concentrations within watersheds of the Savage River and Fifteenmile Creek 
headwater catchments of the Potomac River.  Tabled values are R2 from 
regressions.  Non-statistically significant results (p > 0.05) are denoted by (NS), bold 
italics indicate p < 0.001. 
  

  
Savage River 

(n = 40 
watersheds) 

Fifteenmile Creek   
(n = 35 

watersheds) 
NLCD categorical data (reclassified) NS NS 

NLCD continuous metrics                   
(% impervious, % canopy cover) NS NS 

Tass. Cap Brightness NS NS 
Tass. Cap Greenness 0.10 NS 
Tass. Cap Wetness 0.17 0.12 
Tass. Cap DI 0.12 0.09 
NDVI NS NS 

Landsat        
single-date 

NDII 0.11 NS 
Δ Tass. Cap Brightness NS NS 
Δ Tass. Cap Greenness 0.29 0.23 
Δ Tass. Cap Wetness 0.27 0.25 
Δ Tass. Cap DI 0.20 0.30 
Δ Tass. Cap change vector     
(θ angle + magnitude) 0.30 0.59 

Δ NDVI 0.17 0.35 

Landsat        
inter-annual 

change 
detection 

Δ NDII 0.28 0.44 
Δ EVI 0.23 0.31 MODIS         

daily images Δ NDII 0.25 0.45 
Δ EVI 0.48 0.48 MODIS 8-day 

composite 
images  

Δ NDII 0.48 0.32 

MODIS 16-day Veg. Index Product (Δ EVI)  0.49 0.34 

MODIS for NACP Phenology Product 
(Small integral under EVI phenology curve) NS NS 

Multiple Regression                       
Landsat ΔNDII + NLCD % canopy cover 

NLCD % canopy 
cover not 
significant 

0.58 

 
 
 
 
 



6.0 BENCHMARKING GAPS 
 
The major benchmarking gap would be choice of a suitable model for examining all of 
the potential NASA contributions (see the discussion above under lessons learned).  The 
benchmarking process appears to be a valid technique for documenting any 
improvements that NASA data could make to an existing DST. 
 
7.0 CONCLUSIONS AND RECOMMENDATIONS 
 
The most important conclusion from this study is that the NASA developed data 
assimilation precipitation products will result in improved model performance. 
 
The recommendation culminating from this study is that NASA and EPA work together 
to add this capability to the EPA hand books of procedures.  Thus, any group interested in 
using BASINS to estimate TMDLs, would have an alternative method for estimating 
precipitation inputs.  This will be especially valuable for cases where the nearest weather 
station is some 10s of kilometers outside of the watershed.  This should also expand the 
potential use of BASINS to parts of the world where good meteorological data are 
lacking. 
 
An additional conclusion is for the EPA to evaluate the findings from the Wisconsin 
group to see how some of the forest disturbance metrics could be adapted into a 
parameterization scheme so that HSPF could respond to different forest species and the 
health of the forests. 
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9.0 ABBREVIATIONS AND ACRONYMS 
 
ALI  Advanced Land Imager 
AMSR-E Advanced Microwave Scanning Radiometer-EOS 
ArcView ESRI GUI-based GIS 
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 
BASINS Better Assessment Science Integrating Point and Nonpoint Sources 
BMP  Best Management Practices 



BRDF  Bidirectional Reflectance Distribution Function 
CBP  Chesapeake Bay Program 
CUNY  City University of New York 
DEM  Digital Elevation Model 
DO  Dissolved Oxygen 
DSS  Decision Support System 
DST  Decision Support Tool 
EO-1  NASA’s Earth Observing-1 satellite 
EOS  NASA’s Earth Observing System 
EPA  U.S. Environmental Protection Agency 
ESE  NASA’s Earth Science Enterprise 
ESRI  Environmental Systems Research Institute, Inc. 
ET  Evapotranspiration 
FPAR  Fraction of Photosynthetically Active Radiation 
FSL  NOAA’s Forecast Systems Laboratory 
GAPP  NOAA’s GEWEX Americas Prediction Project 
GEWEX Global Energy and Water Cycle Experiment 
GIS  Geographic Information System 
GMAO NASA’s Global Modeling and Assimilation Office 
GPM  NASA’s Global Precipitation Measurement Mission 
GSFC  NASA’s Goddard Space Flight Center 
HQ  NASA Headquarters 
HSPF  Hydrological Simulation Program - FORTRAN 
IGBP  International Geosphere-Biosphere Programme 
LAI  Leaf Area Index 
LDAS  Land Data Assimilation System 
LIS  Land Information System 
LSM  Land Surface Model 
MODIS Moderate Resolution Imaging Spectroradiometer 
MOU  Memorandum of Understanding 
MVI  Modified Vegetation Index 
NASA  National Aeronautics and Space Administration  
NCEP  National Centers for Environmental Prediction  
NDVI  Normalized Difference Vegetation Index 
NEXRAD NOAA’s Next Generation Doppler Radar 
NLDAS North American Land Data Assimilation System 
NOAA  National Oceanic and Atmospheric Administration 
PEST  Parameter Estimation and tool for model calibration  
PI  Principal Investigator 
PLOAD BASINS Pollutant Loading Application 
Pot. ET Potential Evapotranspiration 
QUAL2E Enhanced Stream Water Quality Model 
RUC  Rapid Update Cycle model 
SRTM  Shuttle Radar Topography Mission 
SSC  NASA’s Stennis Space Center 
STATSGO State Soil Geographic Database 



SWAT  Soil and Water Assessment Tool 
SWIR  Short Wavelength Infrared 
SWM  Stanford Watershed Model 
TIR  Thermal Infrared 
TM  Landsat Thematic Mapper 
TMDL  Total Maximum Daily Load 
TRMM Tropical Rainfall Measuring Mission 
U Wind East-West component of wind vector 
UMCES University of Maryland Center for Environmental Science 
UMCP  University of Maryland, College Park 
UMD  The University of Maryland 
USGAO U.S. Government Accountability Office 
USGS  U.S. Geological Survey 
V Wind North-South component of wind vector 
V&V  Verification and Validation 
VNIR  Visible and Near Infrared 
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APPENDIX II – GSFC LOW FLOW RESULTS 
 
 

 
 

 



 
 

 
 
 
 
 
 
 
 
 



 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX III – GSFC STORM FLOW RESULTS 
 
 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX IV – HUNTER ANNUAL RESULTS 
 
 

 



 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX V – HUNTER LOW FLOW RESULTS 
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